Download Free A First Graduate Course In Abstract Algebra Book in PDF and EPUB Free Download. You can read online A First Graduate Course In Abstract Algebra and write the review.

Realizing the specific needs of first-year graduate students, this reference allows readers to grasp and master fundamental concepts in abstract algebra-establishing a clear understanding of basic linear algebra and number, group, and commutative ring theory and progressing to sophisticated discussions on Galois and Sylow theory, the structure of abelian groups, the Jordan canonical form, and linear transformations and their matrix representations.
Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook. Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of determinants. It also covers Sylow theory and Jordan canonical form. A First Graduate Course in Abstract Algebra is ideal for a two-semester course, providing enough examples, problems, and exercises for a deep understanding. Each of the final three chapters is logically independent and can be covered in any order, perfect for a customized syllabus.
Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook. Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of determinants. It also covers Sylow theory and Jordan canonical form. A First Graduate Course in Abstract Algebra is ideal for a two-semester course, providing enough examples, problems, and exercises for a deep understanding. Each of the final three chapters is logically independent and can be covered in any order, perfect for a customized syllabus.
as a student." --Book Jacket.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Relations between groups and sets, results and methods of abstract algebra in terms of number theory and geometry, and noncommutative and homological algebra. Solutions. 2006 edition.