Download Free A First Course In Logic Book in PDF and EPUB Free Download. You can read online A First Course In Logic and write the review.

"The ability to reason and think in a logical manner forms the basis of learning for most mathematics, computer science, philosophy and logic students. Based on the author's teaching notes at the University of Maryland and aimed at a broad audience, thistext covers the fundamental topics in classical logic in a clear, thorough and accurate style that is accessible to all the above. Covering propositional logic, first-order logic, and second-order logic, as well as proof theory, computability theory, andmodel theory, the text also contains numerous carefully graded exercises and is ideal for a first or refresher course."--BOOK JACKET.
A First Course in Logic is an introduction to first-order logic suitable for first and second year mathematicians and computer scientists. There are three components to this course: propositional logic; Boolean algebras; and predicate/first-order, logic. Logic is the basis of proofs in mathematics — how do we know what we say is true? — and also of computer science — how do I know this program will do what I think it will? Surprisingly little mathematics is needed to learn and understand logic (this course doesn't involve any calculus). The real mathematical prerequisite is an ability to manipulate symbols: in other words, basic algebra. Anyone who can write programs should have this ability.
A First Course in Fuzzy Logic, Third Edition continues to provide the ideal introduction to the theory and applications of fuzzy logic. This best-selling text provides a firm mathematical basis for the calculus of fuzzy concepts necessary for designing intelligent systems and a solid background for readers to pursue further studies and real-world a
Rigorous introduction is simple enough in presentation and context for wide range of students. Symbolizing sentences; logical inference; truth and validity; truth tables; terms, predicates, universal quantifiers; universal specification and laws of identity; more.
A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid’s lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.
Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.
Part I of this coherent, well-organized text deals with formal principles of inference and definition. Part II explores elementary intuitive set theory, with separate chapters on sets, relations, and functions. Ideal for undergraduates.
This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.
Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.