Download Free A Fault Diagnosis Technique For Complex Systems Using Bayesian Data Analysis Book in PDF and EPUB Free Download. You can read online A Fault Diagnosis Technique For Complex Systems Using Bayesian Data Analysis and write the review.

Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis.This unique compendium presents bibliographical review on the use of BNs in fault diagnosis in the last decades with focus on engineering systems. Subsequently, eleven important issues in BN-based fault diagnosis methodology, such as BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification are discussed in various cases.Researchers, professionals, academics and graduate students will better understand the theory and application, and benefit those who are keen to develop real BN-based fault diagnosis system.
Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. - Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications - Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more - Gives numerical and simulation results in each chapter to reflect engineering practices
This book contains papers presented at the 2nd International Conference on Cognitive based Information Processing and Applications (CIPA) in Changzhou, China, from September 22 to 23, 2022. The book is divided into a 2-volume series and the papers represent the various technological advancements in network information processing, graphics and image processing, medical care, machine learning, smart cities. It caters to postgraduate students, researchers, and practitioners specializing and working in the area of cognitive-inspired computing and information processing.
This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.
This book comprises a selection of papers on new methods for analysis and design of hybrid intelligent systems using soft computing techniques from the IFSA 2007 World Congress, held in Cancun, Mexico, June 2007.
Fault detection, with the characteristics of strong uncertainty and randomness, has always been one of the research hotspots in the field of aerospace. Considering that devices will inevitably encounter various unknown interference in the process of use, which greatly limits the performance of many traditional fault detection methods. Therefore, the main aim of this paper is to address this problem from the perspective of uncertainty and randomness of measurement signal. In information engineering, interval-valued neutrosophic sets (IVNSs), belief rule base (BRB), and Dempster-Shafer (D-S) evidence reasoning are always characterized by the strong ability in revealing uncertainty, but each has its drawbacks. As a result, the three theories are firstly combined in this paper to form a powerful fault detection algorithm. Besides, a series of innovations are proposed to improve the method, including a new score function based on p-norm for IVNSs and a new approach of calculating the similarity between IVNSs, which are both proved by authoritative prerequisites. To illustrate the effectiveness of the proposed method, flush air data sensing (FADS), a technologically advanced airborne sensor, is adopted in this paper. The aerodynamic model of FADS is analyzed in detail using knowledge of aerodynamics under subsonic and supersonic conditions, meanwhile, the high-precision model is established based on the aerodynamic database obtained from CFD software.
This book proposes a new approach to dynamic and online risk assessment of automated and autonomous marine systems, taking into account different environmental and operational conditions. The book presents lessons learnt from dynamic positioning incidents and accidents, and discusses the challenges of risk assessment of complex systems. The book begins by introducing dynamic and online risk assessment, before presenting automated and autonomous marine systems, as well as numerous dynamic positioning incidents. It then discusses human interactions with technology and explores how to quantify human error. Dynamic probabilistic risk assessment and online risk assessment are both considered fully, including case studies with the application of assisting operators in decision making in emergency situations. Finally, areas for future research are suggested. This practical volume offers tools and methodologies to help operators make better decisions and improve the safety of automated and autonomous marine systems. It provides a guideline for researchers and practitioners to perform dynamic probabilistic and online risk assessment, which also should be applicable to other complex systems outside the marine and maritime domain, such as nuclear power plants, chemical processes, autonomous transport systems, and space shuttles.
This book provides readers with an overview of recent theories and methods for studying complex mechanical systems used in energy production, such as wind turbines, but not limited to them. The emphasis is put on strategies for increasing energy efficiency, and on recent industrial applications. Topics cover dynamics and vibration, vibroacoustics, engineering design, modelling and simulation, fault diagnostics, signal processing and prognostics. The book is based on peer-review contributions and invited talks presented at the first International Workshop on MOdelling and Simulation of COmplex Systems for Sustainable Energy Efficiency, MOSCOSSEE 2021, held online on February 25-26, 2021, and organized by the LAboratory of Mechanics, Modelling and Production (LA2MP) from University of Sfax, Tunisia and the Department of Mechanical and Aeronautical engineering, Centre of Asset Integrity Management (C-AIM) from University of Pretoria, South Africa. By offering authoritative information on innovative methods and tools for application in renewable energy production, it provides a valuable resource to both academics and professionals, and a bridge to facilitate communication between the two groups.
Bayesian networks are a very general and powerful tool that can be used for a large number of problems involving uncertainty: reasoning, learning, planning and perception. They provide a language that supports efficient algorithms for the automatic construction of expert systems in several different contexts. The range of applications of Bayesian networks currently extends over almost all fields including engineering, biology and medicine, information and communication technologies and finance. This book is a collection of original contributions to the methodology and applications of Bayesian networks. It contains recent developments in the field and illustrates, on a sample of applications, the power of Bayesian networks in dealing the modeling of complex systems. Readers that are not familiar with this tool, but have some technical background, will find in this book all necessary theoretical and practical information on how to use and implement Bayesian networks in their own work. There is no doubt that this book constitutes a valuable resource for engineers, researchers, students and all those who are interested in discovering and experiencing the potential of this major tool of the century.