Download Free A Differentiable Structure For Metric Measure Spaces Book in PDF and EPUB Free Download. You can read online A Differentiable Structure For Metric Measure Spaces and write the review.

The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like , where is a function and is a measure. (iii) To show that on spaces with Ricci curvature bounded from below and dimension bounded from above, the Laplacian of the distance function is always a measure and that this measure has the standard sharp comparison properties. This result requires an additional assumption on the space, which reduces to strict convexity of the norm in the case of smooth Finsler structures and is always satisfied on spaces with linear Laplacian, a situation which is analyzed in detail.
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
Measure and metric are two fundamental concepts in measuring the size of a mathematical object. Yet there has been no systematic investigation of this relation. The book closes this gap.
This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.
The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.
The aim of this book is to present various facets of the theory and applications of Lipschitz functions, starting with classical and culminating with some recent results. Among the included topics we mention: characterizations of Lipschitz functions and relations with other classes of functions, extension results for Lipschitz functions and Lipschitz partitions of unity, Lipschitz free Banach spaces and their applications, compactness properties of Lipschitz operators, Bishop-Phelps type results for Lipschitz functionals, applications to best approximation in metric and in metric linear spaces, Kantorovich-Rubinstein norm and applications to duality in the optimal transport problem, Lipschitz mappings on geodesic spaces. The prerequisites are basic results in real analysis, functional analysis, measure theory (including vector measures) and topology, which, for reader's convenience, are surveyed in the first chapter of the book.
Metric and Differential Geometry grew out of a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, Kähler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. Contributors: M.T. Anderson J.-M. Bismut X. Chen X. Dai R. Harvey P. Koskela B. Lawson X. Ma R. Melrose W. Müller A. Naor J. Simons C. Sormani D. Sullivan S. Sun G. Tian K. Wildrick W. Zhang