Download Free A Critical Laboratory And Field Evaluation Of Selected Surface Prospecting Techniques For Locating Oil And Natural Gas Book in PDF and EPUB Free Download. You can read online A Critical Laboratory And Field Evaluation Of Selected Surface Prospecting Techniques For Locating Oil And Natural Gas and write the review.

The theoretical basis for the radiation HALO method in geochemical exploration for oil and gas is largely unproven but has been covered extensively in the literature. An evaluation of the method was conducted by direct field examination of some of the variables. The variables chosen were surface radiometry, magnetometry, gravity, and near-surface soil sampling. The radiometry included measurements of potassium-40, thallium-208, and bismuth-214. The near-surface soil samples were analyzed for light hydrocarbon gases through C-4, pH, conductivity, surface area, and moisture. Statistical evaluation and comparisons of these variables were made by computer from their data bases. High correlations between variables were confirmed by comparisons of contour maps on transparent overlays. The highest positive correlations were between the five normal gases over the entire eighteen-section map. A distinct relationship was found between conductivity, pH, and the five normal gases. The role of field topography was also found to be significant. No relationship between the hydrocarbon and radiometric anomalies could be found. Radiometric patterns were heavily influenced, however, by the topographic features.
The application of surface geochemical methods to finding petroleum is based on the detection of hydrocarbons in the soil that have leaked from a petroleum reservoir at depth. While the seal over the deposit was once considered impermeable, surface geochemistry data now show that such leakage is a common occurrence. Despite its simplicity and low costs, surface geochemistry remains controversial because, until now, there was no objective and in-depth treatment of the various methods of surface geochemistry for oil exploration. Written by a successful oil finder, this practical guide: * surveys a broad array of surface geochemistry techniques, from soil gases to microbiology, and provides clear strategies for applying them to the high-stakes art of petroleum exploration * offers numerous case studies, both successes and failures, to show the strengths and weaknesses of different approaches * examines statistical and spatial variation, surveys and models in surface geochemistry, demonstrating how each analytical tool can be used to optimize accuracy * integrates surface geochemistry data interpretation with data from conventional methods of oil exploration, and considers the economics of surface geochemical approaches * discusses key topics that have been neglected in the literature, such as grid design and the effects of soils. Geologists, geophysicists, geological engineers and exploration managers involved in petroleum exploration will gain valuable insights from this volume. By presenting and evaluating each method of surface geochemistry in a neutral tone, this book enables the reader to select and employ these methods with greater confidence.
February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index
This volume documents the techniques for geochemical remote sensing of the subsurface, to present case-history evidence of their successes and limitations, and to consider their further potential. The chapters in Part I focus on the mechanisms and models of dispersion that give rise to the patterns we attempt to detect. Part II deals with the detection of dispersion patterns that owe their origins to processes, such as leakage, that are allied to resource emplacement. Part III describes the detection of dispersion patterns that are generated by processes, such as radiodecay and oxidation, taking place in deposits after their emplacement.Every chapter brings a fresh perspective. Radon has met with much success in uranium exploration, whilst thorough research studies on helium and mercury lead to conclusions that tend to discourage use of these gases in mineral exploration. The case for light hydrocarbons is one of compelling simplicity whilst elaborate mathematical and electrochemical models are advanced for metal migration.