Download Free A Correlation Based Approach To Modeling Interferometric Radar Observations Of The Greenland Ice Sheet Book in PDF and EPUB Free Download. You can read online A Correlation Based Approach To Modeling Interferometric Radar Observations Of The Greenland Ice Sheet and write the review.

"Interferometric synthetic aperture radar (InSAR) phase observations have greatly increased our understanding of the topography and motion of ice sheets, but yield little information on the sub-surface structure, a needed description for mass-balance estimates. Inversion of a diffuse volume scatter model shows that InSAR correlation values, p, can be related to radiowave penetration depths, d, which depend on characteristics of the snow/ice volume. Application to European Research Satellite (ERS) images (VV, 5.6 cm, 23 ̊incidence angle) of the Greenland ice sheet imply C-band d of 0 m along the rocky coast, 10-20 m in the bare ice zone, and 20-35 m in the percolation zone and dry snow zone, consistent with in situ results. Moreover, volume scattering reduces the ERS critical baseline from about 1100 m to 300 m. Correlation and backscatter power (ơ0) observations can be combined for further understanding of the snow/ice volume. In particular, p and ơ0 data of 15 km-long, 50 m-high topographic undulations in the dry snow zone arc minimum on the windward side and maximum on the lee side, with 1 to 3 dB variation typical. These spatial variations in the scattering medium appear to follow from differences in snow accumulation due to prevailing winds. Assuming that snow-grains are the dominant source of backscatter, the classical independent-scatterer model is physically implausible at firn densities; a second-order dense-medium radiative transfer model also is unable to explain both the observed d and ơ0. A modified Born approach provides a better match to ơ0 and p separately, but leads to different grain size solutions for each measurement type. A buried layer model based on the incoherent addition of echoes from hoar layer interfaces, in which scattering from a single layer is derived from small-perturbation methods, reconciles the ERS ơ0 and p data, with variations in hoar layer spacing of 12-17 cm providing the needed structural fluctuations for the observed range of ơ0 and p. Translation of layer spacing into accumulation rates predicts a 40% variability in accumulation rate from the windward to lee side and, more importantly, addresses high-resolution mapping of continental accumulation rates"--Leaves iv-v.
Surveys atmospheric, oceanic and cryospheric processes, present and past conditions, and changes in polar environments.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Many advances in spaceborne instrumentation, remote sensing, and data analysis have occurred in recent years, but until now there has been no book that reflects these advances while delivering a uniform treatment of the remote sensing of frozen regions. Remote Sensing of Snow and Ice identifies unifying themes and ideas in these fields and presents them in a single volume. This book provides a comprehensive introduction to the remote sensing of the Earth’s cryosphere. Explaining why cryospheric observations are important and why remote sensing observations are essential, it offers thorough surveys of the physical properties of ice and snow, and of current and emerging remote sensing techniques. Presenting a technical review of how the properties of snow and ice relate to remote sensing observations, the book focuses on principles by which useful geophysical information becomes encoded into the electromagnetic radiation detected during the remote sensing process. The author then discusses in detail the application of remote sensing methods to snow, freshwater ice, glaciers, and icebergs. The book concludes with a summary that examines what remote sensing has revealed about the cryosphere, where major technical problems still exist, and how these problems can be addressed.
This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans.
The earth’s cryosphere, which includes snow, glaciers, ice caps, ice sheets, ice shelves, sea ice, river and lake ice, and permafrost, contains about 75% of the earth’s fresh water. It exists at almost all latitudes, from the tropics to the poles, and plays a vital role in controlling the global climate system. It also provides direct visible evidence of the effect of climate change, and, therefore, requires proper understanding of its complex dynamics. This encyclopedia mainly focuses on the various aspects of snow, ice and glaciers, but also covers other cryospheric branches, and provides up-to-date information and basic concepts on relevant topics. It includes alphabetically arranged and professionally written, comprehensive and authoritative academic articles by well-known international experts in individual fields. The encyclopedia contains a broad spectrum of topics, ranging from the atmospheric processes responsible for snow formation; transformation of snow to ice and changes in their properties; classification of ice and glaciers and their worldwide distribution; glaciation and ice ages; glacier dynamics; glacier surface and subsurface characteristics; geomorphic processes and landscape formation; hydrology and sedimentary systems; permafrost degradation; hazards caused by cryospheric changes; and trends of glacier retreat on the global scale along with the impact of climate change. This book can serve as a source of reference at the undergraduate and graduate level and help to better understand snow, ice and glaciers. It will also be an indispensable tool containing specialized literature for geologists, geographers, climatologists, hydrologists, and water resources engineers; as well as for those who are engaged in the practice of agricultural and civil engineering, earth sciences, environmental sciences and engineering, ecosystem management, and other relevant subjects.