Download Free A Concrete Introduction To Higher Algebra 2e Book in PDF and EPUB Free Download. You can read online A Concrete Introduction To Higher Algebra 2e and write the review.

This book is written as an introduction to higher algebra for students with a background of a year of calculus. The book developed out of a set of notes for a sophomore-junior level course at the State University of New York at Albany entitled Classical Algebra. In the 1950s and before, it was customary for the first course in algebra to be a course in the theory of equations, consisting of a study of polynomials over the complex, real, and rational numbers, and, to a lesser extent, linear algebra from the point of view of systems of equations. Abstract algebra, that is, the study of groups, rings, and fields, usually followed such a course. In recent years the theory of equations course has disappeared. Without it, students entering abstract algebra courses tend to lack the experience in the algebraic theory of the basic classical examples of the integers and polynomials necessary for understanding, and more importantly, for ap preciating the formalism. To meet this problem, several texts have recently appeared introducing algebra through number theory.
An informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials, with much emphasis placed on congruence classes leading the way to finite groups and finite fields. New examples and theory are integrated in a well-motivated fashion and made relevant by many applications -- to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises, ranging from routine examples to extensions of theory, are scattered throughout the book, with hints and answers for many of them included in an appendix.
This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises are found throughout the book.
This book provides the basic theory, techniques, and algorithms of modern cryptography that are applicable to network and cyberspace security. It consists of the following nine main chapters: Chapter 1 provides the basic concepts and ideas of cyberspace and cyberspace security, Chapters 2 and 3 provide an introduction to mathematical and computational preliminaries, respectively. Chapters 4 discusses the basic ideas and system of secret-key cryptography, whereas Chapters 5, 6, and 7 discuss the basic ideas and systems of public-key cryptography based on integer factorization, discrete logarithms, and elliptic curves, respectively. Quantum-safe cryptography is presented in Chapter 8 and offensive cryptography, particularly cryptovirology, is covered in Chapter 9. This book can be used as a secondary text for final-year undergraduate students and first-year postgraduate students for courses in Computer, Network, and Cyberspace Security. Researchers and practitioners working in cyberspace security and network security will also find this book useful as a reference.
The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.
The second of a three-volume work, this is the result of the authors'experience teaching calculus at Berkeley. The book covers techniques and applications of integration, infinite series, and differential equations, the whole time motivating the study of calculus using its applications. The authors include numerous solved problems, as well as extensive exercises at the end of each section. In addition, a separate student guide has been prepared.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
This textbook offers an algorithmic introduction to the field of computer algebra. A leading expert in the field, the author guides readers through numerous hands-on tutorials designed to build practical skills and algorithmic thinking. This implementation-oriented approach equips readers with versatile tools that can be used to enhance studies in mathematical theory, applications, or teaching. Presented using Mathematica code, the book is fully supported by downloadable sessions in Mathematica, Maple, and Maxima. Opening with an introduction to computer algebra systems and the basics of programming mathematical algorithms, the book goes on to explore integer arithmetic. A chapter on modular arithmetic completes the number-theoretic foundations, which are then applied to coding theory and cryptography. From here, the focus shifts to polynomial arithmetic and algebraic numbers, with modern algorithms allowing the efficient factorization of polynomials. The final chapters offer extensions into more advanced topics: simplification and normal forms, power series, summation formulas, and integration. Computer Algebra is an indispensable resource for mathematics and computer science students new to the field. Numerous examples illustrate algorithms and their implementation throughout, with online support materials to encourage hands-on exploration. Prerequisites are minimal, with only a knowledge of calculus and linear algebra assumed. In addition to classroom use, the elementary approach and detailed index make this book an ideal reference for algorithms in computer algebra.
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.
This book deals with several topics in algebra useful for computer science applications and the symbolic treatment of algebraic problems, pointing out and discussing their algorithmic nature. The topics covered range from classical results such as the Euclidean algorithm, the Chinese remainder theorem, and polynomial interpolation, to p-adic expansions of rational and algebraic numbers and rational functions, to reach the problem of the polynomial factorisation, especially via Berlekamp’s method, and the discrete Fourier transform. Basic algebra concepts are revised in a form suited for implementation on a computer algebra system.