Download Free A Concise Introduction To Quantum Mechanics Book in PDF and EPUB Free Download. You can read online A Concise Introduction To Quantum Mechanics and write the review.

Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confi ned to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic fi eld. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.
Presenting a variety of topics that are only briefly touched on in other texts, this book provides a thorough introduction to the techniques of field theory. Covering Feynman diagrams and path integrals, the author emphasizes the path integral approach, the Wilsonian approach to renormalization, and the physics of non-abelian gauge theory. It provides a thorough treatment of quark confinement and chiral symmetry breaking, topics not usually covered in other texts at this level. The Standard Model of particle physics is discussed in detail. Connections with condensed matter physics are explored, and there is a brief, but detailed, treatment of non-perturbative semi-classical methods. Ideal for graduate students in high energy physics and condensed matter physics, the book contains many problems,which help students practise the key techniques of quantum field theory.
This bestselling textbook teaches students how to do quantum mechanics and provides an insightful discussion of what it actually means.
Starting from basic principles, the book systematically covers both Heisenberg and Schrödinger realizations of quantum mechanics (in this order). It provides excellent didactic introduction to the essential principles and treats recent concepts such as entanglement and decoherence. The book gives the background needed to understand quantum cryptography, teleportation and computation, and it is especially suitable for introducing the spin. This second edition includes a more friendly presentation to Hilbert spaces, and more practical applications e.g. scanning tunneling microscope (potential barrier).
Changes and additions to the new edition of this classic textbook include a new chapter on symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, and consolidated treatment of time-dependent potentials.
Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confi ned to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic fi eld. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.
The book is an introduction to quantum mechanics at a level suitable for the second year in a European university (junior or senior year in an American college). The matrix formulation of quantum mechanics is emphasized throughout, and the student is introduced to Dirac notation from the start. A number of major examples illustrate the workings of quantum mechanics. Several of these examples are taken from solid state physics, with the purpose of showing that quantum mechanics forms the common basis for understanding atoms, molecules and condensed matter. The book contains an introductory chapter which puts the concepts of quantum mechanics into a historical framework. The solid-state applications discussed in this text include the quantum Hall effect, spin waves, quantum wells and energy bands. Other examples feature the two-dimensional harmonic oscillator, coherent states, two-electron atoms, the ammonia molecule and the chemical bond. A large number of homework problems are included.
How to Understand Quantum Mechanics presents an accessible introduction to understanding quantum mechanics in a natural and intuitive way, which was advocated by Erwin Schroedinger and Albert Einstein. A theoretical physicist reveals dozens of easy tricks that avoid long calculations, makes complicated things simple, and bypasses the worthless anguish of famous scientists who died in angst. The author's approach is light-hearted, and the book is written to be read without equations, however all relevant equations still appear with explanations as to what they mean. The book entertainingly rejects quantum disinformation, the MKS unit system (obsolete), pompous non-explanations, pompous people, the hoax of the 'uncertainty principle' (it is just a math relation), and the accumulated junk-DNA that got into the quantum operating system by misreporting it. The order of presentation is new and also unique by warning about traps to be avoided, while separating topics such as quantum probability to let the Schroedinger equation be appreciated in the simplest way on its own terms. This is also the first book on quantum theory that is not based on arbitrary and confusing axioms or foundation principles. The author is so unprincipled he shows where obsolete principles duplicated basic math facts, became redundant, and sometimes were just pawns in academic turf wars. The book has many original topics not found elsewhere, and completely researched references to original historical sources and anecdotes concerting the unrecognized scientists who actually did discover things, did not all get Nobel prizes, and yet had interesting productive lives.
What is quantum mechanics? Learn from the experts in the ALL-NEW LADYBIRD EXPERT SERIES A clear, simple and entertaining introduction to the weird, mind-bending world of the very, very small. Written by physicist and broadcaster Professor Jim Al-Khalili, Quantum Mechanics explores all the key players, breakthroughs, controversies and unanswered questions of the quantum world. You'll discover: - How the sun shines - Why light is both a wave and a particle - The certainty of the Uncertainty Principle - Schrodinger's Cat - Einstein's spooky action - How to build a quantum computer - Why quantum mechanics drives even its experts completely crazy 'Jim Al-Khalili has done an admirable job of condensing the ideas of quantum physics from Max Planck to the possibilities of quantum computers into brisk, straightforward English' THE TIMES Learn about other topics in the Ladybird Experts series including The Big Bang, Gravity, Climate Change and Evolution. Written by the leading lights and most outstanding communicators in their fields, the Ladybird Expert books provide clear, accessible and authoritative introductions to subjects drawn from science, history and culture. For an adult readership, the Ladybird Expert series is produced in the same iconic small format pioneered by the original Ladybirds. Each beautifully illustrated book features the first new illustrations produced in the original Ladybird style for nearly forty years.
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.