Download Free A Computational Framework Incorporating Human And Social Behaviors For Occupant Centric Egress Simulation Book in PDF and EPUB Free Download. You can read online A Computational Framework Incorporating Human And Social Behaviors For Occupant Centric Egress Simulation and write the review.

Emergency evacuation (egress) is an important issue in safety design of buildings. Studies of catastrophic incidents have highlighted the need to consider occupants' behaviors for better understanding of evacuation patterns. Although egress outcomes are influenced by human and social factors, quantifying these factors in design codes and standards is difficult because occupants' characteristics and emergency scenarios vary widely. As an alternative, computational egress simulation tools have been used to evaluate egress designs. However, most of current simulation tools oversimplify the behavioral aspects of evacuees. This thesis describes a flexible computational framework that incorporates human and social behaviors in simulations to aid occupant-centric egress design. Based on the analysis of literature in social science and disaster studies, the design requirements of SAFEgress (Social Agents For Egress), an agent-based simulation framework, are derived. In SAFEgress, the agent's decision-making process, the representation of the egress environment and the occupants, and the algorithms that emulate human capabilities in perception and navigation are carefully designed to simulate group dynamics and social interactions. A series of validation tests has been conducted to verify the capability of the framework to model a wide range of behaviors. Case studies of a museum and a stadium show that considering group navigation could cause additional bottlenecks on egress routes, thus prolong evacuation. On the other hand, by strategically arranging stewards to control crowd flow, evacuation time can be significantly improved. SAFEgress provides a means to systematically evaluate the effects of human and social factors on egress performance in buildings and facilities. Using the simulation results, facility managers and designers can develop occupant-centric solutions to crowd problems by addressing different scenarios and unique occupants' characteristics. Furthermore, the framework could be applied to support research in social science to investigate the collective behaviors of crowds in a built environment.
This writing addresses the problem of bringing the perspectives of psychology and sociology about human behavior in emergencies into computational models for egress analysis. Efficacious analysis of emergency egress is facilitated by incorporation of diverse human behavior into a Multi-Agent Simulation System for Egress analysis (MASSEgress). MASSEgress adopts a multi-agent based simulation paradigm to model evacuees as individual agents equipped with sensors, brains and actuators. Individual behavior is simulated through modeling of sensing, decision-making, behavior selection and motor control. Social behavior is simulated through modeling of individual behavior and interactions among individuals. Competitive, queuing, herding, and leader-following behaviors are modeled. MASSEgress is a computational framework; its modular design allows easy extensions to include additional behavior types.
This book constitutes the refereed proceedings of the 6th Conference on Electronic Governance and Open Society: Challenges in Eurasia, EGOSE 2019, held in St. Petersburg, Russia, in November 2019. The 32 revised full papers were carefully reviewed and selected from 82 submissions. The papers are organized in topical sections on smart city;digital government, society and economy; digital intelligence, data science and cybercrime; social networking and media.
This volume describes frontiers in social-behavioral modeling for contexts as diverse as national security, health, and on-line social gaming. Recent scientific and technological advances have created exciting opportunities for such improvements. However, the book also identifies crucial scientific, ethical, and cultural challenges to be met if social-behavioral modeling is to achieve its potential. Doing so will require new methods, data sources, and technology. The volume discusses these, including those needed to achieve and maintain high standards of ethics and privacy. The result should be a new generation of modeling that will advance science and, separately, aid decision-making on major social and security-related subjects despite the myriad uncertainties and complexities of social phenomena. Intended to be relatively comprehensive in scope, the volume balances theory-driven, data-driven, and hybrid approaches. The latter may be rapidly iterative, as when artificial-intelligence methods are coupled with theory-driven insights to build models that are sound, comprehensible and usable in new situations. With the intent of being a milestone document that sketches a research agenda for the next decade, the volume draws on the wisdom, ideas and suggestions of many noted researchers who draw in turn from anthropology, communications, complexity science, computer science, defense planning, economics, engineering, health systems, medicine, neuroscience, physics, political science, psychology, public policy and sociology. In brief, the volume discusses: Cutting-edge challenges and opportunities in modeling for social and behavioral science Special requirements for achieving high standards of privacy and ethics New approaches for developing theory while exploiting both empirical and computational data Issues of reproducibility, communication, explanation, and validation Special requirements for models intended to inform decision making about complex social systems
The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations. The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.
When used appropriately, building performance simulation has the potential to reduce the environmental impact of the built environment, to improve indoor quality and productivity, as well as to facilitate future innovation and technological progress in construction. Since publication of the first edition of Building Performance Simulation for Design and Operation, the discussion has shifted from a focus on software features to a new agenda, which centres on the effectiveness of building performance simulation in building life cycle processes. This new edition provides a unique and comprehensive overview of building performance simulation for the complete building life cycle from conception to demolition, and from a single building to district level. It contains new chapters on building information modelling, occupant behaviour modelling, urban physics modelling, urban building energy modelling and renewable energy systems modelling. This new edition keeps the same chapter structure throughout including learning objectives, chapter summaries and assignments. Moreover, the book: • Provides unique insights into the techniques of building performance modelling and simulation and their application to performance-based design and operation of buildings and the systems which service them. • Provides readers with the essential concepts of computational support of performance-based design and operation. • Provides examples of how to use building simulation techniques for practical design, management and operation, their limitations and future direction. It is primarily intended for building and systems designers and operators, and postgraduate architectural, environmental or mechanical engineering students.
"...a must-read text that provides a historical lens to see how ubicomp has matured into a multidisciplinary endeavor. It will be an essential reference to researchers and those who want to learn more about this evolving field." -From the Foreword, Professor Gregory D. Abowd, Georgia Institute of Technology First introduced two decades ago, the term ubiquitous computing is now part of the common vernacular. Ubicomp, as it is commonly called, has grown not just quickly but broadly so as to encompass a wealth of concepts and technology that serves any number of purposes across all of human endeavor. While such growth is positive, the newest generation of ubicomp practitioners and researchers, isolated to specific tasks, are in danger of losing their sense of history and the broader perspective that has been so essential to the field’s creativity and brilliance. Under the guidance of John Krumm, an original ubicomp pioneer, Ubiquitous Computing Fundamentals brings together eleven ubiquitous computing trailblazers who each report on his or her area of expertise. Starting with a historical introduction, the book moves on to summarize a number of self-contained topics. Taking a decidedly human perspective, the book includes discussion on how to observe people in their natural environments and evaluate the critical points where ubiquitous computing technologies can improve their lives. Among a range of topics this book examines: How to build an infrastructure that supports ubiquitous computing applications Privacy protection in systems that connect personal devices and personal information Moving from the graphical to the ubiquitous computing user interface Techniques that are revolutionizing the way we determine a person’s location and understand other sensor measurements While we needn’t become expert in every sub-discipline of ubicomp, it is necessary that we appreciate all the perspectives that make up the field and understand how our work can influence and be influenced by those perspectives. This is important, if we are to encourage future generations to be as successfully innovative as the field’s originators.
This book constitutes the refereed proceedings of the First International Conference on Digital Human Modeling, DHM 2007, held in Beijing, China in July 2007. The papers thoroughly cover the thematic area of digital human modeling, addressing the following major topics: shape and movement modeling and anthropometry, building and applying virtual humans, medical and rehabilitation applications, as well as industrial and ergonomic applications.