Download Free A Compendium Of Geochemistry Book in PDF and EPUB Free Download. You can read online A Compendium Of Geochemistry and write the review.

A general understanding of these principles and processes (including those pertaining to cosmology, geology, and biology) is essential, maintains the author, for deciphering and predicting transport pathways and final sinks of anthropogenic pollutants in our environment."--BOOK JACKET.
This book provides a comprehensive introduction to the field of geochemistry. The book first lays out the ‘geochemical toolbox’: the basic principles and techniques of modern geochemistry, beginning with a review of thermodynamics and kinetics as they apply to the Earth and its environs. These basic concepts are then applied to understanding processes in aqueous systems and the behavior of trace elements in magmatic systems. Subsequent chapters introduce radiogenic and stable isotope geochemistry and illustrate their application to such diverse topics as determining geologic time, ancient climates, and the diets of prehistoric peoples. The focus then broadens to the formation of the solar system, the Earth, and the elements themselves. Then the composition of the Earth itself becomes the topic, examining the composition of the core, the mantle, and the crust and exploring how this structure originated. A final chapter covers organic chemistry, including the origin of fossil fuels and the carbon cycle’s role in controlling Earth’s climate, both in the geologic past and the rapidly changing present. Geochemistry is essential reading for all earth science students, as well as for researchers and applied scientists who require an introduction to the essential theory of geochemistry, and a survey of its applications in the earth and environmental sciences. Additional resources can be found at: www.wiley.com/go/white/geochemistry
Modern geochemistry possesses not only the vigor of geology and chemistry but also the rigor of mathematics. This book presents quantitative treatments of a wide range of fundamental problems related to geochemistry and geology. It shows that trace elements, isotopes, and equations are integrative tools in modern geochemistry for studying various Earth processes. In many chapters, simple models are presented first, and more parameters are gradually added so that the sophisticated models can be perceived as natural outgrowths of simple ones. The book will help scientists and graduate students in Earth Sciences improve their capacity to understand, apply, criticize, and appreciate the available models and possibly to develop their own models. This understanding will provide penetrating insights into fundamental principles in geochemistry, geology, analytical chemistry, and mass spectrometry as well as any other fields in the natural sciences.
Geochemistry includes new contributions to the field of granite rocks geochemistry, mineralogy, petrology and microstructure studies, geochemistry of radioactive isotopes, and geochronology. It contains detailed geochemical, mineralogical, petrological, sedimentological and geostructural studies from Europa, Asia, Africa, South America and Australia Chapters present geochemical exploration methods, isotopic studies, and macro- and microstructural analyses.
This book provides a comprehensive overview of reaction processes in the Earth's crust and on its surface, both in the laboratory and in the field. A clear exposition of the underlying equations and calculation techniques is balanced by a large number of fully worked examples. The book uses The Geochemist's Workbench® modeling software, developed by the author and already installed at over 1000 universities and research facilities worldwide. Since publication of the first edition, the field of reaction modeling has continued to grow and find increasingly broad application. In particular, the description of microbial activity, surface chemistry, and redox chemistry within reaction models has become broader and more rigorous. These areas are covered in detail in this new edition, which was originally published in 2007. This text is written for graduate students and academic researchers in the fields of geochemistry, environmental engineering, contaminant hydrology, geomicrobiology, and numerical modeling.
Written expressly for undergraduate and graduate geologists, this book focuses on how geochemical principles can be used to solve practical problems. The attention to problem-solving reflects the authors'belief that showing how theory is useful in solving real-life problems is vital for learning. The book gives students a thorough grasp of the basic principles of the subject, balancing the traditional equilibrium perspective and the kinetic viewpoint. The first half of the book considers processes in which temperature and pressure are nearly constant. After introductions to the laws of thermodynamics, to fundamental equations for flow and diffusion, and to solution chemistry, these principles are used to investigate diagenesis, weathering, and natural waters. The second half of the book applies thermodynamics and kinetics to systems undergoing changes in temperature and pressure during magmatism and metamorphism. This revised edition incorporates new geochemical discoveries as examples of processes and pathways, with new chapters on mineral structure and bonding and on organic matter and biomarkers. Each chapter has worked problems, and the authors assume that the student has had a year of college-level chemistry and a year of calculus. Praise for the first edition "A truly modern geochemistry book.... Very well written and quite enjoyable to read.... An excellent basic text for graduate level instruction in geochemistry." —Journal of Geological Education "An up-to-date, broadly conceived introduction to geochemistry.... Given the recent flowering of geochemistry as an interdisciplinary science, and given the extent to which it now draws upon the fundamentals of thermodynamics and kinetics to understand earth and planetary processes, this timely and rigorous [book] is welcome indeed." —Geochimica et Cosmochimica Acta
There remains a lack of understanding of environmental isotopes and their use; students and practitioners typically find the concepts of isotope concentrations and partitioning to be more complicated than for geochemistry. However, this need not be so, if the basics are presented together with geochemistry, using case studies and examples to make the point. This new book presents the basics of environmental isotopes and geochemistry together, with case studies and simple examples that build a real understanding of their use in natural and contaminated groundwater.
Introduction to Mineralogy and Petrology, second edition, presents the essentials of both disciplines through an approach accessible to industry professionals, academic researchers, and students alike. This new edition emphasizes the relationship between rocks and minerals, right from the structures created during rock formation through the economics of mineral deposits. While petrology is classified on the lines of geological evolution and rock formation, mineralogy speaks to the physical and chemical properties, uses, and global occurrences for each mineral, emphasizing the need for the growth of human development. The primary goal is for the reader to identify minerals in all respects, including host-rocks, and mineral deposits, with additional knowledge of mineral-exploration, resource, extraction, process, and ultimate use. To help provide a comprehensive analysis across ethical and socio-economic dimensions, a separate chapter describes the hazards associated with minerals, rocks, and mineral industries, and the consequences to humanity along with remedies and case studies. New to the second edition: includes coverage of minerals and petrology in extra-terrestrial environments as well as case studies on the hazards of the mining industry. Addresses the full scope of core concepts of mineralogy and petrology, including crystal structure, formation and grouping of minerals and soils, definition, origin, structure and classification of igneous, sedimentary and metamorphic rocks Features more than 250 figures, illustrations and color photographs to vividly explore the fundamental principles of mineralogy and petrology Offers a holistic approach to both subjects, beginning with the formation of geologic structures that is followed by the hosting of mineral deposits and the exploration and extraction of lucrative, usable products that improve the health of global economies Includes new content on minerals and petrology in extraterrestrial environments and case studies on hazards in the mining industry
In this complete and thorough update of Arthur Boucot's seminal work, Evolutionary Paleobiology of Behavior and Coevolution, Boucot is joined by George Poinar, who provides additional expertise and knowledge on protozoans and bacteria as applied to disease. Together, they make the Fossil Behavior Compendium wider in scope, covering all relevant ani
This textbook provides a unique and thorough look at the application of chemical biomarkers to aquatic ecosystems. Defining a chemical biomarker as a compound that can be linked to particular sources of organic matter identified in the sediment record, the book indicates that the application of these biomarkers for an understanding of aquatic ecosystems consists of a biogeochemical approach that has been quite successful but underused. This book offers a wide-ranging guide to the broad diversity of these chemical biomarkers, is the first to be structured around the compounds themselves, and examines them in a connected and comprehensive way. This timely book is appropriate for advanced undergraduate and graduate students seeking training in this area; researchers in biochemistry, organic geochemistry, and biogeochemistry; researchers working on aspects of organic cycling in aquatic ecosystems; and paleoceanographers, petroleum geologists, and ecologists. Provides a guide to the broad diversity of chemical biomarkers in aquatic environments The first textbook to be structured around the compounds themselves Describes the structure, biochemical synthesis, analysis, and reactivity of each class of biomarkers Offers a selection of relevant applications to aquatic systems, including lakes, rivers, estuaries, oceans, and paleoenvironments Demonstrates the utility of using organic molecules as tracers of processes occurring in aquatic ecosystems, both modern and ancient