Download Free A Comparative Study Of Mercury And Selenium Concentrations In Fish Tissues Of The Fountain Creek Watershed Colorado Usa Book in PDF and EPUB Free Download. You can read online A Comparative Study Of Mercury And Selenium Concentrations In Fish Tissues Of The Fountain Creek Watershed Colorado Usa and write the review.

To date there have been no published studies done on heavy metal content in fish tissues of the Fountain Creek Watershed Colorado, despite several instances of waste dumping and an increase in urbanization of the area. Six different fish species were collected throughout the watershed at fourteen different sites by way of electroshocking. Each fish was measured, weighed, and examined internally for gravidity. If the fish was determined to be a gravid female; liver, ovary, muscle, and skin tissues were collected for analysis. The rest of the fish, as well as those that were not gravid, were then processes into a homogenized slurry by using a blender. The slurry was then dried and transferred to Teflon tubes before ICP-MS analysis. Mercury concentrations were highest in Upper Fountain Creek (UF-sites), and Monument Creek (MC-sites); ranging from a mean of 284.5 μg/kg at MC-1 and decreased in mean concentration as elevation decreased to a low mean of 59.3 μg/kg at LF-2. The UF-sites and MC-sites showed lower concentrations of selenium ranging from 7.55 μg/kg at UF-2 and increased as elevation decreased to the lowest mean of 9.51 μg/kg at LF-4. This trend was shown with whole-body homogenate concentrations as well as individual tissue-type concentrations were consistently higher in muscle tissue where as selenium concentrations were higher in ovarian tissue. The data suggest accumulation of mercury and selenium is occurring within the icthyofauna of the Fountain Creek Watershed; however, more research is needed to determine if the effects are detrimental to any of the six fish species studied.
Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA's fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise of allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body (lake or stream) in Idaho is compared to the action level to determine if a fish consumption advisory should be issued. The U.S. Geological Survey collected and analyzed individual fillets of mountain whitefish (Prosopium williamsoni), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) for Hg. The median Hg concentration of 0.32 mg/kg exceeded the Idaho water-quality criterion at the site in Brownlee Reservoir. Average Hg concentrations from Brownlee Reservoir (0.32 mg/kg) and the Boise River at mouth (0.33 mg/kg) exceeded the Hg RPTE threshold (>0.24 mg/kg). IFCAP action levels also were exceeded at the sites on Brownlee Reservoir and at the mouth of the Boise River. Median Hg concentrations in fish at the remaining four river sites were less than 0.20 mg/kg with average concentrations ranging from 0.14 to 0.21 mg/kg Hg. Selenium (Se) analysis also was conducted on one composite fish tissue sample per site to screen for general concentrations and to provide information for future risk assessments. Concentrations of Se ranged from 0.07 to 0.49 mg/kg wet weight; average concentrations were highest in smallmouth bass (0.40 mg/kg) and lowest in mountain whitefish (0.12 mg/kg).
Mercury (Hg) analyses were conducted on samples of sport fish and water collected from selected sampling sites in Brownlee Reservoir and the Boise and Snake Rivers to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho, between 2013 and 2015. City of Boise personnel collected water samples from six sites between October and November 2013 and 2015, with one site sampled in 2014. Total Hg concentrations in unfiltered water samples ranged from 0.48 to 8.8 nanograms per liter (ng/L), with the highest value in Brownlee Reservoir in 2013. All Hg concentrations in water samples were less than the U.S. Environmental Protection Agency (USEPA) Hg chronic aquatic life criterion of 12 ng/L. The USEPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). The Idaho Department of Environmental Quality adopted the USEPA's fish-tissue criterion and established a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg Hg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body (lake or stream) in Idaho is compared to the action level to determine if a fish consumption advisory should be issued. The U.S. Geological Survey collected and analyzed individual fillets of mountain whitefish (Prosopium williamsoni), rainbow trout (Oncorhynchus mykiss), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) for Hg. The 2013 average Hg concentration for small mouth bass (0.32 mg/kg) collected at Brownlee Reservoir and for channel catfish (0.33 mg/kg) collected at the Boise River mouth, exceeded the Idaho water quality criterion (>0.3 mg/kg), the Hg RPTE threshold (>0.24 mg/kg), and the IFCAP action level (>0.22 mg/kg). Average Hg concentrations in fish collected in 2014 or 2015 did not exceed evaluation criteria for any of the species assessed. Selenium (Se) analysis was conducted on one composite fish tissue sample per site to assess general concentrations and to provide information for future risk assessments. Composite concentrations of Se in fish tissue collected between 2013 and 2015 ranged from 0.07 and 0.49 mg/kg wet weight with the highest concentration collected from smallmouth bass from the Snake River near Murphy, and the lowest from mountain whitefish from the Boise River at Eckert Road.
The present study compared selenium in fish tissues from flowing water systems near three westcentral Alberta mountain coal mines in the upper McLeod and Smoky River systems to the toxicity effects thresholds developed by Lemly (1996). The main objective of this report is to assess and document data on selenium concentrations observed in fish tissue samples from a variety of fish species collected in 2000 and 2001. A secondary objective was to begin to evaluate the suitability of other fish species as key receptors with respect to selenium monitoring.