Download Free A Commonsense Approach To The Theory Of Error Correcting Codes Book in PDF and EPUB Free Download. You can read online A Commonsense Approach To The Theory Of Error Correcting Codes and write the review.

Teaching the theory of error correcting codes on an introductory level is a difficulttask. The theory, which has immediate hardware applications, also concerns highly abstractmathematical concepts. This text explains the basic circuits in a refreshingly practical way thatwill appeal to undergraduate electrical engineering students as well as to engineers and techniciansworking in industry.Arazi's truly commonsense approach provides a solid grounding in the subject,explaining principles intuitively from a hardware perspective. He fully covers error correctiontechniques, from basic parity check and single error correction cyclic codes to burst errorcorrecting codes and convolutional codes. All this he presents before introducing Galois fieldtheory - the basic algebraic treatment and theoretical basis of the subject, which usually appearsin the opening chapters of standard textbooks. One entire chapter is devoted to specific practicalissues, such as Reed-Solomon codes (used in compact disc equipment), and maximum length sequences(used in various fields of communications). The basic circuits explained throughout the book areredrawn and analyzed from a theoretical point of view for readers who are interested in tackling themathematics at a more advanced level.Benjamin Arazi is an Associate Professor in the Department ofElectrical and Computer Engineering at the Ben-Gurion University of the Negev. His book is includedin the Computer Systems Series, edited by Herb Schwetman.
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.
Do you need to know what signal type to select for a wireless application? Quickly develop a useful expertise in digital modulation with this practical guide, based on the author's experience of over thirty years in industrial design. You will understand the physical meaning behind the mathematics of wireless signals and learn the intricacies and tradeoffs in signal selection and design. Six modulation families and twelve modulation types are covered in depth, together with a quantitative ranking of relative cost incurred to implement any of twelve modulation types. Extensive discussions of the Shannon Limit, Nyquist filtering, efficiency measures and signal-to-noise measures are provided, radio wave propagation and antennas, multiple access techniques, and signal coding principles are all covered, and spread spectrum and wireless system operation requirements are presented.
With computers becoming embedded as controllers in everything from network servers to the routing of subway schedules to NASA missions, there is a critical need to ensure that systems continue to function even when a component fails. In this book, bestselling author Martin Shooman draws on his expertise in reliability engineering and software engineering to provide a complete and authoritative look at fault tolerant computing. He clearly explains all fundamentals, including how to use redundant elements in system design to ensure the reliability of computer systems and networks. Market: Systems and Networking Engineers, Computer Programmers, IT Professionals.
In its fourth edition, this book focuses on real-world examples and practical applications and encourages students to develop a "big-picture" understanding of how essential organization and architecture concepts are applied in the computing world. In addition to direct correlation with the ACM/IEEE CS2013 guidelines for computer organization and architecture, the text exposes readers to the inner workings of a modern digital computer through an integrated presentation of fundamental concepts and principles. It includes the most up-to-the-minute data and resources available and reflects current technologies, including tablets and cloud computing. All-new exercises, expanded discussions, and feature boxes in every chapter implement even more real-world applications and current data, and many chapters include all-new examples. --
Essentials of Computer Organization and Architecture focuses on the function and design of the various components necessary to process information digitally. This title presents computing systems as a series of layers, taking a bottom–up approach by starting with low-level hardware and progressing to higher-level software. Its focus on real-world examples and practical applications encourages students to develop a “big-picture” understanding of how essential organization and architecture concepts are applied in the computing world. In addition to direct correlation with the ACM/IEEE guidelines for computer organization and architecture, the text exposes readers to the inner workings of a modern digital computer through an integrated presentation of fundamental concepts and principles.
Computer Architecture/Software Engineering
Spectral techniques facilitate the design and testing of today's increasingly complex digital devices There is heightened interest in spectral techniques for the design of digital devices dictated by ever increasing demands on technology that often cannot be met by classical approaches. Spectral methods provide a uniform and consistent theoretic environment for recent achievements in this area, which appear divergent in many other approaches. Spectral Logic and Its Applications for the Design of Digital Devices gives readers a foundation for further exploration of abstract harmonic analysis over finite groups in the analysis, design, and testing of digital devices. After an introduction, this book provides the essential mathematical background for discussing spectral methods. It then delves into spectral logic and its applications, covering: * Walsh, Haar, arithmetic transform, Reed-Muller transform for binary-valued functions and Vilenkin-Chrestenson transform, generalized Haar, and other related transforms for multiple-valued functions * Polynomial expressions and decision diagram representations for switching and multiple-value functions * Spectral analysis of Boolean functions * Spectral synthesis and optimization of combinational and sequential devices * Spectral methods in analysis and synthesis of reliable devices * Spectral techniques for testing computer hardware This is the authoritative reference for computer science and engineering professionals and researchers with an interest in spectral methods of representing discrete functions and related applications in the design and testing of digital devices. It is also an excellent text for graduate students in courses covering spectral logic and its applications.
Introduction to Computer Data Representation introduces readers to the representation of data within computers. Starting from basic principles of number representation in computers, the book covers the representation of both integer and floating point numbers, and characters or text. It comprehensively explains the main techniques of computer arithmetic and logical manipulation. The book also features chapters covering the less usual topics of basic checksums and ‘universal’ or variable length representations for integers, with additional coverage of Gray Codes, BCD codes and logarithmic representations. The description of character coding includes information on both MIME and Unicode formats. Introduction to Computer Data Representation also includes historical aspects of data representation, explaining some of the steps that developers took (and the mistakes they made) that led to the present, well-defined and accepted standards of data representation techniques. The book serves as a primer for advanced computer science graduates and a handy reference for anyone wanting to learn about numbers and data representation in computers.
This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments