Download Free A Collection Of Contributions In Honour Of Jack Van Lint Book in PDF and EPUB Free Download. You can read online A Collection Of Contributions In Honour Of Jack Van Lint and write the review.

This collection of contributions is offered to Jack van Lint on the occasion of his sixtieth birthday and appears simultaneously in the series Topics in Discrete Mathematics and as a special double volume of Discrete Mathematics (Volumes 106/107). It is hoped that the papers selected, all written by experts in their own fields, represent the many interesting areas that together constitute the discipline of Discrete Mathematics. It is in this sphere that van Lint has become the acknowledged master and this expansive volume serves to demonstrate the enormous significance he has had on the development of Discrete Mathematics during the last 30 years.
Latin Squares and Their Applications, Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the end of the first edition is discussed and commented upon. In addition, a number of new unsolved problems are proposed. Using an engaging narrative style, this book provides thorough coverage of most parts of the subject, one of the oldest of all discrete mathematical structures and still one of the most relevant. However, in consequence of the huge expansion of the subject in the past 40 years, some topics have had to be omitted in order to keep the book of a reasonable length. Latin squares, or sets of mutually orthogonal latin squares (MOLS), encode the incidence structure of finite geometries; they prescribe the order in which to apply the different treatments in designing an experiment in order to permit effective statistical analysis of the results; they produce optimal density error-correcting codes; they encapsulate the structure of finite groups and of more general algebraic objects known as quasigroups. As regards more recreational aspects of the subject, latin squares provide the most effective and efficient designs for many kinds of games tournaments and they are the templates for Sudoku puzzles. Also, they provide a number of ways of constructing magic squares, both simple magic squares and also ones with additional properties. - Retains the organization and updated foundational material from the original edition - Explores current and emerging research topics - Includes the original 73 'Unsolved Problems' with the current state of knowledge regarding them, as well as new Unsolved Problems for further study
This book constitutes the refereed proceedings of the 15th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-15, held in Toulouse, France, in May 2003. The 25 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 40 submissions. Among the subjects addressed are block codes; algebra and codes: rings, fields, and AG codes; cryptography; sequences; decoding algorithms; and algebra: constructions in algebra, Galois groups, differential algebra, and polynomials.
Thisvolumerepresentstherefereedproceedingsofthe7thInternationalC- ference on Finite Fields and Applications (F 7) held during May 5-9, q 2003, in Toulouse, France. The conference was hosted by the Pierre Baudis C- gress Center, downtown, and held at the excellent conference facility. This event continued a series of biennial international conferences on Finite Fields and - plications, following earlier meetings at the University of Nevada at Las Vegas (USA) in August 1991 and August 1993, the University of Glasgow (UK) in July 1995, the University of Waterloo (Canada) in August 1997, the Univ- sity of Augsburg (Germany) in August 1999, and the Universidad Aut ́ onoma Metropolitana-Iztapalapa, in Oaxaca (Mexico) in 2001. The Organizing Committee of F 7 consisted of Claude Carlet (INRIA, Paris, q France), Dieter Jungnickel (University of Augsburg, Germany), Gary Mullen (Pennsylvania State University, USA), Harald Niederreiter (National University of Singapore, Singapore), Alain Poli, Chair (Paul Sabatier University, Toulouse, France), Henning Stichtenoth (Essen University, Germany), and Horacio Tapia- Recillas (Universidad Aut ́ onoma Metropolitan-Iztapalapa, Mexico). The program of the conference consisted of four full days and one half day of sessions, with eight invited plenary talks, and close to 60 contributed talks.
Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the first of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured topics include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.
This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.
Following an initiative of the late Hans Zassenhaus in 1965, the Departments of Mathematics at The Ohio State University and Denison University organize conferences in combinatorics, group theory, and ring theory. Between May 18-21, 2000, the 25th conference of this series was held. Usually, there are twenty to thirty invited 20-minute talks in each of the three main areas. However, at the 2000 meeting, the combinatorics part of the conference was extended, to honor the 65th birthday of Professor Dijen Ray-Chaudhuri. This volulme is the proceedings of this extension. Most of the papers are in coding theory and design theory, reflecting the major interest of Professor Ray-Chaudhuri, but there are articles on association schemes, algebraic graph theory, combinatorial geometry, and network flows as well. There are four surveys and seventeen research articles, and all of these went through a thorough refereeing process. The volume is primarily recommended for researchers and graduate students interested in new developments in coding theory and design theory.
This volume contains the proceedings of the 14th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory (AGCT), held June 3-7, 2013, at CIRM, Marseille, France. These international conferences, held every two years, have been a major event in the area of algorithmic and applied arithmetic geometry for more than 20 years. This volume contains 13 original research articles covering geometric error correcting codes, and algorithmic and explicit arithmetic geometry of curves and higher dimensional varieties. Tools used in these articles include classical algebraic geometry of curves, varieties and Jacobians, Suslin homology, Monsky-Washnitzer cohomology, and -functions of modular forms.
One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and their connections with invariant theory, which has inspired hundreds of papers about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory which is powerful enough to include all the earlier generalizations.
Classification of Finite Simple Groups, one of the most monumental accomplishments of modern mathematics, was announced in 1983 with the proof completed in 2004. Since then, it has opened up a new and powerful strategy to approach and resolve many previously inaccessible problems in group theory, number theory, combinatorics, coding theory, algebraic geometry, and other areas of mathematics. This strategy crucially utilizes various information about finite simple groups, part of which is catalogued in the Atlas of Finite Groups (John H. Conway et al.), and in An Atlas of Brauer Characters (Christoph Jansen et al.). It is impossible to overestimate the roles of the Atlases and the related computer algebra systems in the everyday life of researchers in many areas of contemporary mathematics. The main objective of the conference was to discuss numerous applications of the Atlases and to explore recent developments and future directions of research, with focus on the interaction between computation and theory and applications to number theory and algebraic geometry. The papers in this volume are based on talks given at the conference. They present a comprehensive survey on current research in all of these fields.