Download Free A Clinical Information System For Oncology Book in PDF and EPUB Free Download. You can read online A Clinical Information System For Oncology and write the review.

Oncology Informatics: Using Health Information Technology to Improve Processes and Outcomes in Cancer Care encapsulates National Cancer Institute-collected evidence into a format that is optimally useful for hospital planners, physicians, researcher, and informaticians alike as they collectively strive to accelerate progress against cancer using informatics tools. This book is a formational guide for turning clinical systems into engines of discovery as well as a translational guide for moving evidence into practice. It meets recommendations from the National Academies of Science to "reorient the research portfolio" toward providing greater "cognitive support for physicians, patients, and their caregivers" to "improve patient outcomes." Data from systems studies have suggested that oncology and primary care systems are prone to errors of omission, which can lead to fatal consequences downstream. By infusing the best science across disciplines, this book creates new environments of "Smart and Connected Health." Oncology Informatics is also a policy guide in an era of extensive reform in healthcare settings, including new incentives for healthcare providers to demonstrate "meaningful use" of these technologies to improve system safety, engage patients, ensure continuity of care, enable population health, and protect privacy. Oncology Informatics acknowledges this extraordinary turn of events and offers practical guidance for meeting meaningful use requirements in the service of improved cancer care. Anyone who wishes to take full advantage of the health information revolution in oncology to accelerate successes against cancer will find the information in this book valuable. Presents a pragmatic perspective for practitioners and allied health care professionals on how to implement Health I.T. solutions in a way that will minimize disruption while optimizing practice goals Proposes evidence-based guidelines for designers on how to create system interfaces that are easy to use, efficacious, and timesaving Offers insight for researchers into the ways in which informatics tools in oncology can be utilized to shorten the distance between discovery and practice
As its name implies, this book deals with clinical information systems. The clinical information system (or CIS) is an automated system with a long term database containing clinical information used for patient care. This definition excludes business systems (no clinical data), physiological monitoring systems (no long term database), and many research systems (not used in patient care). The theses of this book are (a) that CIS technology is mature, (b) that the CIS will have a major impact upon patient care and the health delivery system, and (c) that the number of commercial systems which now offer these potential benefits is very small. The objective of this book is to establish the above theses and thereby (a) inform both users and developers, (b) increase the demand for more sophisticated products, and finally, (c) provide marketplace incentives to advance the state of the art. The CIS is an application of computer technology for a specific class of problems. Its development requires a knowledge of the technology with an understanding of the application area. As with any tool-based application, the scope of the product will be limited by the capability of the tool. In the case of the CIS, reliable computers with comprehensive database facilities became com mercially available in the early 1970s. By the mid 1970s there was a maturation of the literature, and evaluations of 5-years' use began to appear. As will be shown, there have been surprisingly few new ideas introduced since the 1970s.
A Clinical Information System for Oncology describes a medical information system designed and implemented in a cancer center but with broad applicability to medical practice beyond the cancer center environment in both inpatient and outpatient settings. Regarded as forward looking in 1978, the system has the distinction of still being in production. Indeed, its functionality has continued to grow and its technical implementation to evolve with the changing technology over the last decade. The authors detail the functions supported by this unique system, illustrate how it assists in the care process, review its development history, and evaluate its impact on the delivery of care in terms of cost, user satisfaction, and efficacy. Unlike much information technology, the system is an active participant in medical decision making: it includes comprehensive tools for managing and displaying clinical data; automatically produces care plans from protocols; and features unique tools which support the effective use of blood products. Professionals in medical informatics, hospital administrators, and physicians will find this book a valuable addition to their professional library.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Reflecting the increased importance of the collaborations between radiation oncology and informatics professionals, Informatics in Radiation Oncology discusses the benefits of applying informatics principles to the processes within radiotherapy. It explores how treatment and imaging information is represented, stored, and retrieved as well as how this information relates to other patient data. The book deepens your knowledge of current and emerging information technology and informatics principles applied to radiation oncology so that all the data gathered—from laboratory results to medical images—can be fully exploited to make treatments more effective and processes more efficient. After introducing the basics of informatics and its connection to radiation oncology, the book examines the process of healthcare delivery in radiation oncology, the challenges of managing images in radiotherapy, and the burgeoning field of radiogenomics. It then presents teaching, clinical trials, and research tools and describes open access clinical imaging archives in radiotherapy, techniques for maximizing information from multimodality imaging, and the roles of images in treatment planning. It also looks at how informatics can improve treatment planning, the safety and efficiency of delivery systems, image-guided patient positioning, and patient assessment. The book concludes with discussions on how outcomes modeling evaluates the effectiveness of treatments, how quality control informatics improves the reliability of processes, and how to perform quality assurance on the informatics tools. With contributions from a host of top international experts in radiation oncology, medical physics, and informatics, this book leads the way in moving the field forward. It encourages you to find new ways of applying informatics to radiation oncology and help your patients in their fight against cancer.
Cancer Informatics chronicles the development of the National Cancer Institute's new Cancer Informatics Infrastructure (CII) - an information management system infrastructure designed to faciliate clinical trials, provide for reliable, secure information exchange, and improve patient care. The book details the challenges involved in creating and managing such a knowledge base, including technologies, standards, and current, state-of-the-art applications. The ultimate goal of CII is to function as an enabler of clinical trials, expediting the clinical trials lifecycle, faciliating faster and safer drug development and more appropriate treatment choices for cancer patients. Contributors address the role the CII must play in converting the growing knowledge of genes, proteins, and pathways into appropriate preventative, diagnostic, and therapeutic measures. Presented in four sections, the first provides an overview of the processes involved in moving the infrastructure for cancer from theory into practice. Sections two through four offer the latest work done in the areas of technology, cancer-specific and national standards, and applications to faciliate clinical trials.
An Introduction to Healthcare Informatics: Building Data-Driven Tools bridges the gap between the current healthcare IT landscape and cutting edge technologies in data science, cloud infrastructure, application development and even artificial intelligence. Information technology encompasses several rapidly evolving areas, however healthcare as a field suffers from a relatively archaic technology landscape and a lack of curriculum to effectively train its millions of practitioners in the skills they need to utilize data and related tools. The book discusses topics such as data access, data analysis, big data current landscape and application architecture. Additionally, it encompasses a discussion on the future developments in the field. This book provides physicians, nurses and health scientists with the concepts and skills necessary to work with analysts and IT professionals and even perform analysis and application architecture themselves. - Presents case-based learning relevant to healthcare, bringing each concept accompanied by an example which becomes critical when explaining the function of SQL, databases, basic models etc. - Provides a roadmap for implementing modern technologies and design patters in a healthcare setting, helping the reader to understand both the archaic enterprise systems that often exist in hospitals as well as emerging tools and how they can be used together - Explains healthcare-specific stakeholders and the management of analytical projects within healthcare, allowing healthcare practitioners to successfully navigate the political and bureaucratic challenges to implementation - Brings diagrams for each example and technology describing how they operate individually as well as how they fit into a larger reference architecture built upon throughout the book
This in-depth book addresses a key void in the literature surrounding the Internet of Things (IoT) and health. By systematically evaluating the benefits of mobile, wireless, and sensor-based IoT technologies when used in health and wellness contexts, the book sheds light on the next frontier for healthcare delivery. These technologies generate data with significant potential to enable superior care delivery, self-empowerment, and wellness management. Collecting valuable insights and recommendations in one accessible volume, chapter authors identify key areas in health and wellness where IoT can be used, highlighting the benefits, barriers, and facilitators of these technologies as well as suggesting areas for improvement in current policy and regulations. Four overarching themes provide a suitable setting to examine the critical insights presented in the 31 chapters: Mobile- and sensor-based solutions Opportunities to incorporate critical aspects of analytics to provide superior insights and thus support better decision-making Critical issues around aspects of IoT in healthcare contexts Applications of portals in healthcare contexts A comprehensive overview that introduces the critical issues regarding the role of IoT technologies for health, Delivering Superior Health and Wellness Management with IoT and Analytics paves the way for scholars, practitioners, students, and other stakeholders to understand how to substantially improve health and wellness management on a global scale.
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
This book explains how telemedicine can offer solutions capable of improving the care and survival rates of cancer patients and can also help patients to live a normal life in spite of their condition. Different fields of application – community, hospital and home based – are examined, and detailed attention is paid to the use of tele-oncology in rural/extreme rural settings and in developing countries. The impact of new technologies and the opportunities afforded by the social web are both discussed. The concluding chapters consider eLearning in relation to cancer care and assess the scope for education to improve prevention. No medical condition can shatter people’s lives as cancer does today and the need to develop strategies to reduce the disease burden and improve quality of life is paramount. Readers will find this new volume in Springer’s TELe Health series to be a rich source of information on the important contribution that can be made by telemedicine in achieving these goals.