Download Free A Calorimetric Study Of Liquid Crystalline Phase Transitions In Confined Geometries Book in PDF and EPUB Free Download. You can read online A Calorimetric Study Of Liquid Crystalline Phase Transitions In Confined Geometries and write the review.

About half a century ago Landau formulated the central principles of the phe nomenological second-order phase transition theory which is based on the idea of spontaneous symmetry breaking at phase transition. By means of this ap proach it has been possible to treat phase transitions of different nature in altogether distinct systems from a unified viewpoint, to embrace the aforemen tioned transitions by a unified body of mathematics and to show that, in a certain sense, physical systems in the vicinity of second-order phase transitions exhibit universal behavior. For several decades the Landau method has been extensively used to an alyze specific phase transitions in systems and has been providing a basis for interpreting experimental data on the behavior of physical characteristics near the phase transition, including the behavior of these characteristics in systems subject to various external effects such as pressure, electric and magnetic fields, deformation, etc. The symmetry aspects of Landau's theory are perhaps most effective in analyzing phase transitions in crystals because the relevant body of mathemat ics for this symmetry, namely, the crystal space group representation, has been worked out in great detail. Since particular phase transitions in crystals often call for a subtle symmetry analysis, the Landau method has been continually refined and developed over the past ten or fifteen years.
The Nato Advanced Study Institute "Phase Transitions in Liquid Crystals" was held May 2-12, 1991, in Erice, Sicily. This was the 16th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The subject of "Liquid Crystals" has made amazing progress since the last ISQE Course on this subject in 1985. The present Proceedings give a tutorial introduction to today's most important areas, as well as a review of current results by leading researchers. We have brought together some of the world's acknowledged experts in the field to summarize both the present state of their research and its background. Most of the lecturers attended all the lectures and devoted their spare hours to stimulating discussions. We would like to thank them all for their admirable contributions. The Institute also took advantage of a very active audience; most of the students were active researchers in the field and contributed with discussions and seminars. Some of these student seminars are also included in these Proceedings. We did not modify the original manuscripts in editing this book, but we did group them according to the following topics: 1) "Theoretical Foundations"; 2) "Thermotropic Liquid Crystals"; 3) "Ferroelectric Liquid Crystals"; 4) "Polymeric Liquid Crystals"; and 5) "Lyotropic Liquid Crystals".
The monograph presents the various methods of the modulation and of measuring the temperature oscillations. Important applications of the modulation techniques for studying physical phenomena in solids and liquids are considered in depth (equilibrium point defects, phase transitions, superconductors, liquid crystals, biological materials, relaxation phenomena in specific heat, etc).
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
Distinct scientific communities are usually involved in the three fields of quasi-crystals, of liquid crystals, and of systems having modulated crystalline structures. However, in recent years, there has been a growing feeling that a number of common problems were encountered in the three fields. These comprise the need to recur to "exotic" spaces for describing the type of order of the atomic or molecular configurations of these systems (Euclidian "superspaces" of dimensions greater than 3, or 4-dimensional curved spaces); the recognition that one has to deal with geometrically frustrated systems, and also the occurence of specific excitations (static or dynamic) resulting from the continuous degeneracies of the stable structures considered. In the view of discussing these problems, aNA TO-Advance Research Workshop has assembled in Preveza (Greece), in september 1989,50 experts of the three considered fields (with an equal proportion of theorists and experimentalists). 35 hours of conferences and discussions have led to a more detailed evaluation of the similarities and of the differences in the approaches implemented in the studies of the three types of systems. The papers contained in this NATO-series book provide the substance of this workshop. The reader will find three types of papers. Some very short papers giving the main ideas stated on a subject. Papers comprising 8-10 pages which stick closely to the contents of the talks presented. Longer papers providing more extensively the background and results relative to a given topic. It is worth summarizing the principal outputs of the workshop.