Download Free 4th Silicon In Agriculture Conference Book in PDF and EPUB Free Download. You can read online 4th Silicon In Agriculture Conference and write the review.

In the present era, rapid industrialization and urbanization has resulted in unwanted physiological, chemical, and biological changes in the environment that have harmful effects on crop quality and productivity. This situation is further worsened by the growing demand for food due to an ever increasing population. This forces plant scientists and agronomists to look forward for alternative strategies to enhance crop production and produce safer, healthier foods. Biotic and abiotic stresses are major constraints to crop productivity and have become an important challenge to agricultural scientists and agronomists due to the fact that both stress factors considerably reduce agriculture production worldwide per year. Silicon has various effects on plant growth and development, as well as crop yields. It increases photosynthetic activity, creates better disease resistance, reduces heavy metal toxicity, improves nutrient imbalance, and enhances drought tolerance. Silicon in Plants: Advances and Future Prospects presents the beneficial effects of silicon in improving productivity in plants and enhancing the capacity of plants to resist stresses from environmental factors. It compiles recent advances made worldwide in different leading laboratories concerning the role of silicon in plant biology in order to make these outcomes easily accessible to academicians, researchers, industrialists, and students. Nineteen chapters summarize information regarding the role of silicon in plants, their growth and development, physiological and molecular responses, and responses against the various abiotic stresses.
This book constitutes Part IV of the refereed four-volume post-conference proceedings of the 4th IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture, CCTA 2010, held in Nanchang, China, in October 2010. The 352 revised papers presented were carefully selected from numerous submissions. They cover a wide range of interesting theories and applications of information technology in agriculture, including simulation models and decision-support systems for agricultural production, agricultural product quality testing, traceability and e-commerce technology, the application of information and communication technology in agriculture, and universal information service technology and service systems development in rural areas.
Advances in Agronomy, Volume 146 is the latest in a series that continues to be recognized as a leading reference for the latest research in agronomy. Updated chapters in this new release include the Significance and Role of Si in Crop Production, National Comparison of the Total and Sequestered Organic Matter Contents of Conventional and Organic Farm Soils, Purine – N Metabolism in Drought or Salinity Challenged Food Security Crops, Plant Rooting and Cropping Systems Management to Improve N Use Efficiency, and The Important Role of Layered Double Hydroxides in Soil Chemical Processes and Remediation: What We Have Learned Over the Past 20 Years. Each volume in the evolving series contains an eclectic group of reviews by leading scientists throughout the world. As always, the subjects covered are rich, varied and exemplary of the abundant subject matter addressed by this long-running serial. - Includes numerous, timely, state-of-the-art reviews on the latest advancements in agronomy - Features distinguished, well recognized authors from around the world - Builds upon this venerable and iconic review series - Covers the extensive variety and breadth of subject matter in the crop and soil sciences
This book gathers a selection of peer-reviewed papers presented at the 4th Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2022) conference held in Bangkok, Thailand, on December 16–17. The contributions, prepared by an international team of scientists and engineers, cover the latest advances and challenges made in the field of big data analytics methods and approaches for the data-driven co-design of communication, computing, and control for smart cities. Given its scope, it offers a valuable resource for all researchers and professionals interested in big data, smart cities, and cyber-physical systems.
(This book is a printed edition of the Special Issue "Plant Nutrient Dynamics in Stressful Environments" that was published in Agriculture
Silicon, considered to be the second most abundant mineral element in soil, plays an important role in the mineral nutrition of plants. A wide variety of monocot and dicot species have benefited from silicon nutrition, whether direct or indirect, when they are exposed to different types of abiotic and or biotic stresses. Besides the many agronomic and horticultural benefits gained by maintaining adequate levels of this element in the soil and also in the plant tissue, the most notable effect of silicon is the reduction in the intensities of a number of plant diseases caused by biotrophic, hemibiotrophic and necrotrophic plant pathogens in many crops of great economic importance. The aim of this book is to summarize our current understanding of the effects of silicon on plant diseases. The chapters address the dynamics of silicon in soils and plants; the history of silicon in the control of plant diseases; the use of silicon to control soil-borne, seed-borne and foliar diseases in monocots and dicots; the mechanisms involved in the host resistance against infection by plant pathogens mediated by silicon as well as the current knowledge at the omics level, and finally, highlights and prospects for using silicon in the future.
Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies produce tools to achieve the abovementioned goals. The explosive technological advances and developments in recent years have enormously facilitated the attainment of these objectives, removing many barriers for their implementation, including the reservations expressed by farmers. Precision agriculture and ‘smart farming’ are emerging areas where sensor-based technologies play an important role. Farmers, researchers, and technical manufacturers are joining their efforts to find efficient solutions, improvements in production, and reductions in costs. This book brings together recent research and developments concerning novel sensors and their applications in agriculture. Sensors in agriculture are based on the requirements of farmers, according to the farming operations that need to be addressed.
Since the publication of the third edition of the Handbook of Plant and Crop Stress, continuous discoveries in the fields of plant and crop environmental stresses and their effects on plants and crops have resulted in the compilation of a large volume of the latest discoveries. Following its predecessors, this fourth edition offers a unique and comprehensive collection of topics in the fields of plant and crop stress. This new edition contains more than 80% new material, and the remaining 20% has been updated and revised substantially. This volume presents 10 comprehensive sections that include information on soil salinity and sodicity problems; tolerance mechanisms and stressful conditions; plant/crop responses; plant/crop responses under pollution and heavy metal; plant/crop responses under biotic stress; genetic factors and plant/crop genomics under stress conditions; plant/crop breeding under stress conditions; empirical investigations; improving tolerance; and beneficial aspects of stressors. Features: Provides exhaustive coverage written by an international panel of experts in the field of agriculture, particularly in plant/crop stress areas Contains 40 new chapters and 10 extensively revised and expanded chapters Includes three new sections on plant breeding, stress exerted to weeds by plants, and beneficial aspects of stress on plants/crops Numerous case studies With contributions from 100 scientists and experts from 20 countries, this Handbook provides a comprehensive resource for research and for university courses, covering soil salinity/sodicity issues and plant/crop physiological responses under environmental stress conditions ranging from cellular aspects to whole plants. The content can be used to plan, implement, and evaluate strategies to mitigate plant/crop stress problems. This new edition includes numerous tables, figures, and illustrations to facilitate comprehension of the material as well as thousands of index words to further increase accessibility to the desired information.
Agronomic crops have been a source of foods, beverages, fodders, fuels, medicines and industrial raw materials since the dawn of human civilization. Over time, these crops have come to be cultivated using scientific methods instead of traditional methods. However, in the era of climate change, agronomic crops are increasingly subjected to various environmental stresses, which results in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yield and maintain productivity under both normal and adverse conditions. To promote the sustainable production of agronomic crops, scientists are currently exploring a range of approaches, which include varietal development, soil management, nutrient and water management, pest management etc. Researchers have also made remarkable progress in developing stress tolerance in crops through various approaches. However, finding solutions to meet the growing food demands remains a challenge. Although there are several research publications on the above-mentioned problems, there are virtually no comprehensive books addressing all of the recent topics. Accordingly, this book, which covers all aspects of production technologies, management practices, and stress tolerance of agronomic crops in a single source, offers a highly topical guide.