Download Free 3d Reconstruction Book in PDF and EPUB Free Download. You can read online 3d Reconstruction and write the review.

Three-dimensional (3D) reconstruction is the process of capturing the shape and appearance of real objects using computer vision and computer graphics. In this book, the authors present topical research in the study of the methods, applications and challenges of 3D reconstruction. Topics include 3D medical reconstruction and case studies; 3D reconstruction of coronary anatomy using invasive imaging modalities; recent advances in eel spectroscopic tomography; stereoscopic Schlieren/shadowgraph 3D reconstruction techniques; three-dimensional refractive index imaging of cells to study light scattering properties of cells and tissue; 3D imaging of material properties by combination of scanning probe microscope and ultramicrotome; 3D reconstruction and its application for maxillofacial surgery training; the automated systems of processing of the fragmented material at archaeological and craniology 3D reconstruction; three-dimensional reconstruction of an acinus for numerical and experimental studies; large scene reconstruction based on ToF cameras; and the structure and motion factorisation of non-rigid objects.
The issue discusses methods to extract 3-dimensional (3D) models from plain images. In particular, the 3D information is obtained from images for which the camera parameters are unknown. The principles underlying such uncalibrated structure-from-motion methods are outlined. First, a short review of 3D acquisition technologies puts such methods in a wider context, and highlights their important advantages. Then, the actual theory behind this line of research is given. The authors have tried to keep the text maximally self-contained, therefore also avoiding to rely on an extensive knowledge of the projective concepts that usually appear in texts about self-calibration 3D methods. Rather, mathematical explanations that are more amenable to intuition are given. The explanation of the theory includes the stratification of reconstructions obtained from image pairs as well as metric reconstruction on the basis of more than 2 images combined with some additional knowledge about the cameras used. Readers who want to obtain more practical information about how to implement such uncalibrated structure-from-motion pipelines may be interested in two more Foundations and Trends issues written by the same authors. Together with this issue they can be read as a single tutorial on the subject.
3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. 3D Surface Reconstruction: Multi-Scale Hierarchical Approaches is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.
The study of three-dimensional reconstruction of objects and scenes has been and remains now a widely researched topic. It has been investigated for many applications, for instance, video game development, animation, movies, virtual reality, teleoperating surgery, among other engineering-related applications. In this book, Chapter One reviews preoperative planning and intraoperative navigation based on 3D modeling for retroperitoneal procedures. Chapter Two discusses fringe pattern analysis using phase shifting techniques applied to solid digitalization in Advanced RISC Machine (ARM) architecture. Chapter Three describes the steps for 3D digitalization using a Fourier Transform Profilometry (FTP). Chapter Four compares different wavelet transform for its use in 3D reconstruction.
3D image reconstruction is used in many fields, such as medicine, entertainment, and computer science. This highly demanded process comes with many challenges, such as images becoming blurry by atmospheric turbulence, getting snowed with noise, or becoming damaged within foreign regions. It is imperative to remain well-informed with the latest research in this field. Recent Advances in 3D Imaging, Modeling, and Reconstruction is a collection of innovative research on the methods and common techniques of image reconstruction as well as the accuracy of these methods. Featuring coverage on a wide range of topics such as ray casting, holographic techniques, and machine learning, this publication is ideally designed for graphic designers, computer engineers, medical professionals, robotics engineers, city planners, game developers, researchers, academicians, and students.
This book presents the latest advances in photometric 3D reconstruction. It provides the reader with an overview of the state of the art in the field, and of the latest research into both the theoretical foundations of photometric 3D reconstruction and its practical application in several fields (including security, medicine, cultural heritage and archiving, and engineering). These techniques play a crucial role within such emerging technologies as 3D printing, since they permit the direct conversion of an image into a solid object. The book covers both theoretical analysis and real-world applications, highlighting the importance of deepening interdisciplinary skills, and as such will be of interest to both academic researchers and practitioners from the computer vision and mathematical 3D modeling communities, as well as engineers involved in 3D printing. No prior background is required beyond a general knowledge of classical computer vision models, numerical methods for optimization, and partial differential equations.
"This work proposes a Multibody Structure from Motion (MSfM) algorithm for moving object reconstruction that incorporates instance-aware semantic segmentation and multiple view geometry methods. The MSfM pipeline tracks two-dimensional object shapes on pixel level to determine object specific feature correspondences, in order to reconstruct 3D object shapes as well as 3D object motion trajectories" -- Publicaciones de Arquitectura y Arte.
As mobile robots become more common in general knowledge and practices, as opposed to simply in research labs, there is an increased need for the introduction and methods to Simultaneous Localization and Mapping (SLAM) and its techniques and concepts related to robotics. Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods investigates the complexities of the theory of probabilistic localization and mapping of mobile robots as well as providing the most current and concrete developments. This reference source aims to be useful for practitioners, graduate and postgraduate students, and active researchers alike.
This book formalizes and analyzes the relations between multiple views of a scene from the perspective of various types of geometries. A key feature is that it considers Euclidean and affine geometries as special cases of projective geometry. Over the last forty years, researchers have made great strides in elucidating the laws of image formation, processing, and understanding by animals, humans, and machines. This book describes the state of knowledge in one subarea of vision, the geometric laws that relate different views of a scene. Geometry, one of the oldest branches of mathematics, is the natural language for describing three-dimensional shapes and spatial relations. Projective geometry, the geometry that best models image formation, provides a unified framework for thinking about many geometric problems are relevant to vision. The book formalizes and analyzes the relations between multiple views of a scene from the perspective of various types of geometries. A key feature is that it considers Euclidean and affine geometries as special cases of projective geometry. Images play a prominent role in computer communications. Producers and users of images, in particular three-dimensional images, require a framework for stating and solving problems. The book offers a number of conceptual tools and theoretical results useful for the design of machine vision algorithms. It also illustrates these tools and results with many examples of real applications.
This unique work presents a detailed review of the processing and analysis of 3D point clouds. A fully automated framework is introduced, incorporating each aspect of a typical end-to-end processing workflow, from raw 3D point cloud data to semantic objects in the scene. For each of these components, the book describes the theoretical background, and compares the performance of the proposed approaches to that of current state-of-the-art techniques. Topics and features: reviews techniques for the acquisition of 3D point cloud data and for point quality assessment; explains the fundamental concepts for extracting features from 2D imagery and 3D point cloud data; proposes an original approach to keypoint-based point cloud registration; discusses the enrichment of 3D point clouds by additional information acquired with a thermal camera, and describes a new method for thermal 3D mapping; presents a novel framework for 3D scene analysis.