Download Free 3d Motion Of Rigid Bodies Book in PDF and EPUB Free Download. You can read online 3d Motion Of Rigid Bodies and write the review.

This book offers an excellent complementary text for an advanced course on the modelling and dynamic analysis of multi-body mechanical systems, and provides readers an in-depth understanding of the modelling and control of robots. While the Lagrangian formulation is well suited to multi-body systems, its physical meaning becomes paradoxically complicated for single rigid bodies. Yet the most advanced numerical methods rely on the physics of these single rigid bodies, whose dynamic is then given among multiple formulations by the set of the Newton–Euler equations in any of their multiple expression forms. This book presents a range of simple tools to express in succinct form the dynamic equation for the motion of a single rigid body, either free motion (6-dimension), such as that of any free space navigation robot or constrained motion (less than 6-dimension), such as that of ground or surface vehicles. In the process, the book also explains the equivalences of (and differences between) the different formulations.
A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.
This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial robotics) are provided. Ideal for students and practitioners, this book provides readers with a clear path to understanding rigid body mechanics and its significance in numerous sub-fields of mechanical engineering and related areas.
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.
A quantitative approach to studying human biomechanics, presenting principles of classical mechanics using case studies involving human movement. Vector algebra and vector differentiation are used to describe the motion of objects and 3D motion mechanics are treated in depth. Diagrams and software-created sequences are used to illustrate human movement.
This open access textbook takes the reader step-by-step through the concepts of mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics, where a deep understanding of the concepts is essential in understanding all branches of physics. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics. After solving all of the examples, the reader will have gained a solid foundation in mechanics and the skills to apply the concepts in a variety of situations. The book is useful for undergraduate students majoring in physics and other science and engineering disciplines. It can also be used as a reference for more advanced levels.
Traditionally, say 15 years ago, three-dimensional image analysis (aka computer vi sion) and three-dimensional image synthesis (aka computer graphics) were separate fields. Rarely were expert
This book offers a systematic and comprehensive introduction to the visual simultaneous localization and mapping (vSLAM) technology, which is a fundamental and essential component for many applications in robotics, wearable devices, and autonomous driving vehicles. The book starts from very basic mathematic background knowledge such as 3D rigid body geometry, the pinhole camera projection model, and nonlinear optimization techniques, before introducing readers to traditional computer vision topics like feature matching, optical flow, and bundle adjustment. The book employs a light writing style, instead of the rigorous yet dry approach that is common in academic literature. In addition, it includes a wealth of executable source code with increasing difficulty to help readers understand and use the practical techniques. The book can be used as a textbook for senior undergraduate or graduate students, or as reference material for researchers and engineers in related areas.