Download Free 3d Integration For Noc Based Soc Architectures Book in PDF and EPUB Free Download. You can read online 3d Integration For Noc Based Soc Architectures and write the review.

This book presents the research challenges that are due to the introduction of the 3rd dimension in chips for researchers and covers the whole architectural design approach for 3D-SoCs. Nowadays the 3D-Integration technologies, 3D-Design techniques, and 3D-Architectures are emerging as interesting, truly hot, broad topics. The present book gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures. This book includes contributions from high level international teams working in this field.
This book covers various aspects of optimization in design and testing of Network-on-Chip (NoC) based multicore systems. It gives a complete account of the state-of-the-art and emerging techniques for near optimal mapping and test scheduling for NoC-based multicores. The authors describe the use of the Integer Line Programming (ILP) technique for smaller benchmarks and a Particle Swarm Optimization (PSO) to get a near optimal mapping and test schedule for bigger benchmarks. The PSO-based approach is also augmented with several innovative techniques to get the best possible solution. The tradeoff between performance (communication or test time) of the system and thermal-safety is also discussed, based on designer specifications. Provides a single-source reference to design and test for circuit and system-level approaches to (NoC) based multicore systems; Gives a complete account of the state-of-the-art and emerging techniques for near optimal mapping and test scheduling in (NoC) based multicore systems; Organizes chapters systematically and hierarchically, rather than in an ad hoc manner, covering aspects of optimization in design and testing of Network-on-Chip (NoC) based multicore systems.
This fourth volume of the landmark handbook focuses on the design, testing, and thermal management of 3D-integrated circuits, both from a technological and materials science perspective. Edited and authored by key contributors from top research institutions and high-tech companies, the first part of the book provides an overview of the latest developments in 3D chip design, including challenges and opportunities. The second part focuses on the test methods used to assess the quality and reliability of the 3D-integrated circuits, while the third and final part deals with thermal management and advanced cooling technologies and their integration.
3D integration is an emerging technology for the design of many-core microprocessors and memory integration. This book, Advances in 3D Integrated Circuits and Systems, is written to help readers understand 3D integrated circuits in three stages: device basics, system level management, and real designs.Contents presented in this book include fabrication techniques for 3D TSV and 2.5D TSI; device modeling; physical designs; thermal, power and I/O management; and 3D designs of sensors, I/Os, multi-core processors, and memory.Advanced undergraduates, graduate students, researchers and engineers may find this text useful for understanding the many challenges faced in the development and building of 3D integrated circuits and systems.
Synthesising fifteen years of research, this authoritative text provides a comprehensive treatment of two major technologies for wireless chip and module interface design, covering technology fundamentals, design considerations and tradeoffs, practical implementation considerations, and discussion of practical applications in neural network, reconfigurable processors, and stacked SRAM. It explains the design principles and applications of two near-field wireless interface technologies for 2.5-3D IC and module integration respectively, and describes system-level performance benefits, making this an essential resource for researchers, professional engineers and graduate students performing research in next-generation wireless chip and module interface design.
This book describes the first comprehensive approach to the optimization of interconnect architectures in 3D systems on chips (SoCs), specially addressing the challenges and opportunities arising from heterogeneous integration. Readers learn about the physical implications of using heterogeneous 3D technologies for SoC integration, while also learning to maximize the 3D-technology gains, through a physical-effect-aware architecture design. The book provides a deep theoretical background covering all abstraction-levels needed to research and architect tomorrow’s 3D-integrated circuits, an extensive set of optimization methods (for power, performance, area, and yield), as well as an open-source optimization and simulation framework for fast exploration of novel designs.
This book provides comprehensive coverage of Network-on-Chip (NoC) security vulnerabilities and state-of-the-art countermeasures, with contributions from System-on-Chip (SoC) designers, academic researchers and hardware security experts. Readers will gain a clear understanding of the existing security solutions for on-chip communication architectures and how they can be utilized effectively to design secure and trustworthy systems.
The book elaborates selected, extended and peer reviewed papers on Communication and Signal Proceesing. As Vol. 8 of the series on "Advances on Signals, Systems and Devices" it presents main topics such as: content based video retrieval, wireless communication systems, biometry and medical imaging, adaptive and smart antennae.
The proposal of doubling the number of transistors on an IC chip (with minimum costs and subtle innovations) every 24 months by Gordon Moore in 1965 (the so-called called Moore's law) has been the most powerful driver for the emphasis of the microelectronics industry in the past 50 years. This law enhances lithography scaling and integration, in 2D, of all functions on a single chip, increasingly through system-on-chip (SOC). On the other hand, the integration of all these functions can be achieved through 3D integrations . Generally speaking, 3D integration consists of 3D IC packaging, 3D IC integration, and 3D Si integration. They are different and mostly the TSV (through-silicon via) separates 3D IC packaging from 3D IC/Si integrations since the latter two uses TSVs, but 3D IC packaging does not. TSV (with a new concept that every chip or interposer could have two surfaces with circuits) is the heart of 3D IC/Si integrations. Continued technology scaling together with the integration of disparate technologies in a single chip means that device performance continues to outstrip interconnect and packaging capabilities, and hence there exist many difficult engineering challenges, most notably in power management, noise isolation, and intra and inter-chip communication. 3D Si integration is the right way to go and compete with Moore's law (more than Moore versus more Moore). However, it is still a long way to go. In this book, Fengyuan SUN proposes new substrate network extraction techniques. Using this latter, the substrate coupling and loss in IC's can be analyzed. He implements some Green/TLM (Transmission Line Matrix) algorithms in MATLAB. It permits to extract impedances between any number of embedded contacts or/and TSVS. He does investigate models of high aspect ratio TSV, on both analytical and numerical methods electromagnetic simulations. This model enables to extract substrate and TSV impedance, S parameters and parasitic elements, considering the variable resistivity of the substrate. It is full compatible with SPICE-like solvers and should allow an investigation in depth of TSV impact on circuit performance.
Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems.