Download Free 3d Face Modeling Analysis And Recognition Book in PDF and EPUB Free Download. You can read online 3d Face Modeling Analysis And Recognition and write the review.

3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application scenarios expected as the discipline develops further. The book covers face acquisition through 3D scanners and 3D face pre-processing, before examining the three main approaches for 3D facial surface analysis and recognition: facial curves; facial surface features; and 3D morphable models. Whilst the focus of these chapters is fundamentals and methodologies, the algorithms provided are tested on facial biometric data, thereby continually showing how the methods can be applied. Key features: • Explores the underlying mathematics and will apply these mathematical techniques to 3D face analysis and recognition • Provides coverage of a wide range of applications including biometrics, forensic applications, facial expression analysis, and model fitting to 2D images • Contains numerous exercises and algorithms throughout the book
3D Face Processing: Modeling, Analysis and Synthesis introduces the frontiers of 3D face processing techniques. It reviews existing 3D face processing techniques, including techniques for 3D face geometry modeling; 3D face motion modeling; and 3D face motion tracking and animation. Then it discusses a unified framework for face modeling, analysis and synthesis. In this framework, the authors present new methods for modeling complex natural facial motion, as well as face appearance variations due to illumination and subtle motion. Then the authors apply the framework to face tracking, expression recognition and face avatar for HCI interface. They conclude this book with comments on future work in the 3D face processing framework. 3D Face Processing: Modeling, Analysis and Synthesis will interest those working in face processing for intelligent human computer interaction and video surveillance. It contains a comprehensive survey on existing face processing techniques, which can serve as a reference for students and researchers. It also covers in-depth discussion on face motion analysis and synthesis algorithms, which will benefit more advanced graduate students and researchers.
An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.
3D Face Processing: Modeling, Analysis and Synthesis introduces the frontiers of 3D face processing techniques. It reviews existing 3D face processing techniques, including techniques for 3D face geometry modeling; 3D face motion modeling; and 3D face motion tracking and animation. Then it discusses a unified framework for face modeling, analysis and synthesis. In this framework, the authors present new methods for modeling complex natural facial motion, as well as face appearance variations due to illumination and subtle motion. Then the authors apply the framework to face tracking, expression recognition and face avatar for HCI interface. They conclude this book with comments on future work in the 3D face processing framework. 3D Face Processing: Modeling, Analysis and Synthesis will interest those working in face processing for intelligent human computer interaction and video surveillance. It contains a comprehensive survey on existing face processing techniques, which can serve as a reference for students and researchers. It also covers in-depth discussion on face motion analysis and synthesis algorithms, which will benefit more advanced graduate students and researchers.
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry and cover both theoretical and practical aspects of real Computer Vision problems. The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year. This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview of challenging areas with key references to the existing literature.
Major strides have been made in face processing in the last ten years due to the fast growing need for security in various locations around the globe. A human eye can discern the details of a specific face with relative ease. It is this level of detail that researchers are striving to create with ever evolving computer technologies that will become our perfect mechanical eyes. The difficulty that confronts researchers stems from turning a 3D object into a 2D image. That subject is covered in depth from several different perspectives in this volume. Face Processing: Advanced Modeling and Methods begins with a comprehensive introductory chapter for those who are new to the field. A compendium of articles follows that is divided into three sections. The first covers basic aspects of face processing from human to computer. The second deals with face modeling from computational and physiological points of view. The third tackles the advanced methods, which include illumination, pose, expression, and more. Editors Zhao and Chellappa have compiled a concise and necessary text for industrial research scientists, students, and professionals working in the area of image and signal processing. - Contributions from over 35 leading experts in face detection, recognition and image processing - Over 150 informative images with 16 images in FULL COLOR illustrate and offer insight into the most up-to-date advanced face processing methods and techniques - Extensive detail makes this a need-to-own book for all involved with image and signal processing
This book constitutes the refereed proceedings of the International Conference of Young Computer Scientists, Engineers and Educators, ICYCSEE 2015, held in Harbin, China, in January 2015. The 61 revised full papers presented were carefully reviewed and selected from 200 submissions. The papers cover a wide range of topics related to intelligent computation in Big Data era, such as artificial intelligence, machine learning, algorithms, natural language processing, image processing, MapReduce, social network.
This book addresses biometrics from a biomedical engineering point of view. Divided into five sections, it discusses topics including the influence of pathologies on various biometric modalities (e.g. face, iris, fingerprint), medical and security biometrics, behavioural biometrics, instrumentation, wearable technologies and imaging. The final chapters also present a number of case studies. The book is suitable for advanced graduate and postgraduate students, engineers and researchers, especially those in signal and image processing, biometrics, and biomedical engineering.
The refereed proceedings of the 4th International Conference on Audio-and Video-Based Biometric Person Authentication, AVBPA 2003, held in Guildford, UK, in June 2003. The 39 revised full plenary papers and 72 revised full poster papers were carefully reviewed and selected for presentation. There are topical sections on face; speech; fingerprint; image, video processing, and tracking; general issues; handwriting, signature, and palm; gait; and fusion.