Download Free 2nd International Conference On Chemical And Bioprocess Engineering In Conjunction With 19th Symposium Of Malaysian Chemical Engineers Somche 2005 December 8 10 2005 Book in PDF and EPUB Free Download. You can read online 2nd International Conference On Chemical And Bioprocess Engineering In Conjunction With 19th Symposium Of Malaysian Chemical Engineers Somche 2005 December 8 10 2005 and write the review.

This book evaluates and discusses the main sustainability challenges encountered in the production of biofuel and bio-products from oil palm biomass. It starts off with the emphasis on oil palm production, oil palm products recovery and oil palm wastes utilization. The simultaneous production of these bio-products for sustainable development is discussed. This is followed by the key factors defining the sustainability of biofuel and bio-product production from oil palm biomass. The environmental issues including ecological, life cycle assessment and environmental impact assessment of oil palm plantation, milling and refining for the production of biofuels and bio-products are presented. Socio-economic and thermodynamic analysis of the production processes are also evaluated using various sustainability assessment tools such as exergy. Lastly, methods of improving biofuel production systems for sustainable development are highlighted.
Biotechnology is defined as the evaluation and use of biological agents and materials in the production of goods and services for industry, trade and commerce. In this four-volume set there are two main divisions of the subject matter: an academic coverage of the disciplinary underpinnings of the field in Volumes 1 and 2, followed by a practical view of the various processes and products in Volumes 3 and 4. In the integration of these two areas, other common factors dealing with product quality, process economics and government policies are introduced at appropriate points throughout all four volumes. Volume 1 specifically delineates and integrates the unifying multidisciplinary principles in terms of relevant genetic, biological, chemical and biochemical fundamentals. As in the other volumes, a glossary of terms and nomenclature guidelines is included to assist both the beginner and the non-specialist.
Aline Leon ́ In the last years, public attention was increasingly shifted by the media and world governmentsto the conceptsof saving energy,reducingpollution,protectingthe - vironment, and developing long-term energy supply solutions. In parallel, research funding relating to alternative fuels and energy carriers is increasing on both - tional and international levels. Why has future energy supply become such a matter of concern? The reasons are the problems created by the world’s current energy supply s- tem which is mainly based on fossil fuels. In fact, the energystored in hydrocarb- based solid, liquid, and gaseous fuels was, is, and will be widely consumed for internal combustion engine-based transportation, for electricity and heat generation in residential and industrial sectors, and for the production of fertilizers in agric- ture, as it is convenient, abundant, and cheap. However, such a widespread use of fossil fuels by a constantly growing world population (from 2. 3 billion in 1939 to 6. 5 billion in 2006) gives rise to the two problems of oil supply and environmental degradation. The problemrelated to oil supply is caused by the fact that fossil fuels are not - newable primary energy sources: This means that since the rst barrel of petroleum has been pumped out from the ground, we have been exhausting a heritage given by nature.
A fuel cell is an electrochemical device that converts the chemical energy of a reaction (between fuel and oxidant) directly into electricity. Given their efficiency and low emissions, fuel cells provide an important alternative to power produced from fossil fuels. A major challenge in their use is the need for better materials to make fuel cells cost-effective and more durable. This important book reviews developments in materials to fulfil the potential of fuel cells as a major power source.After introductory chapters on the key issues in fuel cell materials research, the book reviews the major types of fuel cell. These include alkaline fuel cells, polymer electrolyte fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells and regenerative fuel cells. The book concludes with reviews of novel fuel cell materials, ways of analysing performance and issues affecting recyclability and life cycle assessment.With its distinguished editor and international team of contributors, Materials for fuel cells is a valuable reference for all those researching, manufacturing and using fuel cells in such areas as automotive engineering. - Examines the key issues in fuel cell materials research - Reviews the major types of fuel cells such as direct methanol and regenerative fuel cells - Further chapters explore ways of analysing performance and issues affecting recyclability and life cycle assessment
This book is a follow-up to the IChemE symposium on “Neural Networks and Other Learning Technologies”, held at Imperial College, UK, in May 1999. The interest shown by the participants, especially those from the industry, has been instrumental in producing the book. The papers have been written by contributors of the symposium and experts in this field from around the world. They present all the important aspects of neural network utilisation as well as show the versatility of neural networks in various aspects of process engineering problems — modelling, estimation, control, optimisation and industrial applications.
As the global population grows and many developing countries modernize, the importance of water supply and wastewater treatment becomes a much greater factor in the welfare of nations. Clearly, in today’s world the competition for water resources coupled with the unfortunate commingling of wastewater discharges with freshwater supplies creates additional pressure on treatment systems. Recently, researchers focus on wastewater treatment by difference methods with minimal cost and maximum efficiency. This volume of the Wastewater Engineering: Advanced Wastewater Treatment Systems is a selection of topics related to physical-chemical and biological processes with an emphasis on their industrial applications. It gives an overview of various aspects in wastewater treatments methods including topics such as biological, bioremediation, electrochemical, membrane and physical-chemical applications. Experts in the area of environmental sciences from diverse institutions worldwide have contributed to this book, which should prove to be useful to students, teachers, and researchers in the disciplines of wastewater engineering, chemical engineering, environmental engineering, and biotechnology. We gratefully acknowledge the cooperation and support of all the contributing authors.
Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features: Provides an overview on the supercapacitor application of inorganic-based materials. Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors. Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors. Surveys current applications in supercapacitor energy storage. Explores the new aspects of inorganic materials and next-generation supercapacitor systems.
We are honoured to present this collection of selected papers from the International Conference on Mixing and Crystallization, held at the Tioman Island, Malaysia in April, 1998. We are grateful to the editorial board comprising five eminent researchers in the field of mixing and crystallization for their thoughtful review and suggestions. In order to make this book as current as possible some of the papers have been thoroughly revised, which caused some delay in bringing out this edited version. We received necessary support from the Institute of Post Graduate Studies and Research, the University of Malaya and the Special Research Centre for Multiphase Processes, and the University of Newcastle, Australia in organizing this conference. We are indebted to the Institute of Chemical Engineers, United Kingdom, and the Institution of Engineers, Malaysia for their sponsorship. We would like to thank K.C. Lim, Dr. C. Ramakanth and Ms. Zubaidah for their help at the various stages of editing. We would also like to express our gratitude to Professor Mohd. Ali Hashim and Dr. Nafis Ahmed for their help and encouragement. Finally, I would like to thank Kluwer Academic Publishers for publishing this book. Bhaskar Sen Gupta Shaliza Ibrahim University of Malaya, Kuala Lumpur xi CFD MODELLING OF HYDRODYNAMIC CONDITIONS WITHIN THE WAKE OF MIXING IMPELLER BLADES 1 G.D. RIGByl., G. LANE . AND G.M. EVANSl.
This book provides researchers and graduate students with an overview of the latest developments in and applications of adsorption processes for water treatment and purification. In particular, it covers current topics in connection with the modeling and design of adsorption processes, and the synthesis and application of cost-effective adsorbents for the removal of relevant aquatic pollutants. The book describes recent advances and alternatives to improve the performance and efficacy of this water purification technique. In addition, selected chapters are devoted to discussing the reliable modeling and analysis of adsorption data, which are relevant for real-life applications to industrial effluents and groundwater. Overall, the book equips readers with a general perspective of the potential that adsorption processes hold for the removal of emerging water pollutants. It can readily be adopted as part of special courses on environmental engineering, adsorption and water treatment for upper undergraduate and graduate students. Furthermore, the book offers a valuable resource for researchers in water production control, as well as for practitioners interested in applying adsorption processes to real-world problems in water treatment and related areas.