Download Free 2d Nanoarchitectures For Sensing Biosensing Applications Book in PDF and EPUB Free Download. You can read online 2d Nanoarchitectures For Sensing Biosensing Applications and write the review.

Approx.630 pages Covers fundamentals of MXene-based hybrid nanostructures, including synthesis and characterization methods Explores innovative and emerging applications, with a focus on environmental remediation and sensors Addresses challenges, such as environmental impact and lifecycle, as well as future possibilities
Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects provides a general overview of the development and performance of different novel molecular frameworks as potent vehicles for sensing Chemical Weapons (CWs). The chapters are contributed by leading researchers in the areas of materials science, medical science, chemical science, and nanotechnology from industries, academics, government and private research institutions across the globe. It covers cover topics such as inorganic nanocomposites, hyperbranched polymers, and graphene heterojunctions for effective sensing of CW agents. This book is a highly valuable reference source for graduates, post-graduates, and research scholars primarily in the fields of materials science, medicinal chemistry, organic chemistry, and nanoscience and nanotechnology. In addition, almost all analytical techniques will be discussed, making this a first-rate reference for professors, students, and scientists in many industries. - Provides an efficient, reliable, and highly versatile approach for the synthesis of different molecular systems suitable for diversity-oriented strategies, structure-activity studies and molecular tailoring for the sensing of chemical warfare agents - Goes into depth on new binary organogels, discrete carbon nanomaterials (CNMs) and molecularly imprinted polymers (MIPs) and has endowed electrochemical chemosensors (ECCSs) with high selectivity and sensitivity towards the detection of chemical warfare agent - Highlights in detail the detection of CWs by composite optical waveguide sensors, and describes disposable biofilm biosensors for sensitive detection of biotoxicity in water with treatment of nerve agent poisoning
Enzymes Conjugated to Graphene, Volume 609 in the Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on Enzyme immobilization, Detection of Urea, Enzyme immobilization Enzyme immobilization, PAMAM dendrimer modified reduced graphene oxide post functionalized by horseradish peroxidase for biosensing H2O2, HRP immobilized for LEV detection, Enzyme immobilization, Graphene biocatalysts, Enzyme immobilization, Interactions, Enzyme immobilization, GQD, Enzyme Immobilization, and Enzyme immobilization on functionalized graphene oxide nanosheets. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods of Enzymology series - Updated release includes the latest information on the enzymes conjugated to graphene
The current work consists of nine contributions describing recent progress in the interdisciplinary of Nanoscience, which involves physics, chemistry, engineering, biology and medicine and one essay outlining some important historical and socioeconomic factors pertaining to recent developments in nanoscale science and technology. All 10 chapters have been written by eminent experts in their respective fields. The authors employ the terms ‘nanomaterials’ as building blocks of a range of materials, ‘nanoarchitecture’ represents the design and ‘nanotechnology’ the means to produce a particular device or functionality. Two of the chapters are devoted to novel materials and two others focus on analyzing techniques, which can be used to enable molecular control of the film architecture. Additionally, the reader will find material devoted to photonic and hybrid plasmonic-photonic crystals as well as sections which address their applications, such as the use of plasmonic particles and nanostructures for new sensing concepts and ultrasensitive detection techniques. This work will be of interest to graduate students, researchers and practitioners alike.
This book reviews the potential of next-generation point-of-care diagnosis in healthcare. It also discusses the printed chip-based assay (Lab-on-a-Chip, Lab-on-a-PCB) for rapid, inexpensive biomarkers detection. The book presents the development of sensory systems based on the use of nanomaterials. It examines different biosensors for medical diagnosis using surface modification strategies of transducers. It presents electrochemical concepts based on different nanobiomaterials and nanocomposites for cancer theranostics. Notably, the book examines the recent advances in wearable, cost-effective hemodynamic sensors to detect diseases at an early stage. It further explores the combination of redox cycling and electrochemical detection to develop ultrasensitive and reproducible biosensors for point-of-care testing. Finally, the book summarizes the significant challenges in the point of care diagnostics and its future opportunities in healthcare. ​
2D Monoelements: Properties and Applications explores the challenges, research progress and future developments of the basic idea of two-dimensional monoelements, classifications, and application in field-effect transistors for sensing and biosensing. The thematic topics include investigations such as: Recent advances in phosphorene The diverse properties of two-dimensional antimonene, of graphene and its derivatives The molecular docking simulation study used to analyze the binding mechanisms of graphene oxide as a cancer drug carrier Metal-organic frameworks (MOFs)-derived carbon (graphene and carbon nanotubes) and MOF-carbon composite materials, with a special emphasis on the use of these nanostructures for energy storage devices (supercapacitors) Two-dimensional monoelements classification like graphene application in field-effect transistors for sensing and biosensing Graphene-based ternary materials as a supercapacitor electrode Rise of silicene and its applications in gas sensing
This book explores the exciting and evolving world of plasma physics in materials manufacturing and processing. From ionized discharges to non-thermal equilibrium plasmas, new phenomena in physics are constantly emerging. Written, organized, and edited by internationally recognized experts, the various chapters delve into diverse issues in plasma science, including new applications at the nanoscale to the development of diagnostic tools and simulations. The interactions between the plasma state and matter, both surface and bulk, as well as gases and liquids, are explored. As electric discharges in plasmas continue to expand towards new horizons, anyone interested in this fascinating field would benefit from this book as an up-to-date and essential resource.
This book highlights the significance and usefulness of nanomaterials for the development of sensing devices and their real-life applications. The book also addresses various means of synthesizing functional materials, e.g., hydrothermal deposition process, electrospinning, Ostwald ripening, sputtering heterogeneous deposition, liquid-phase preparation, the vapor deposition approach, and aerosol flame synthesis. It presents an informative overview of the role of functional materials in the development of advanced sensor devices at the nanoscale and discusses the applications of functional materials in different forms prepared by diverse techniques in the field of optoelectronics and biomedical devices. Major features, such as type of advanced functional, fabrication methods, applications, tasks, benefits and restrictions, and saleable features, are presented in this book. Advanced functional materials for sensing have much wider applications and have an enormous impact on our environment.
This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists.