Download Free 2008 Ieee Workshop On Motion And Video Computing Book in PDF and EPUB Free Download. You can read online 2008 Ieee Workshop On Motion And Video Computing and write the review.

The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.
Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the shop; and what are the frequent paths), and to measure operational efficiency for improving customer experience. Video analytics has the enormous potential for non-security oriented commercial applications. This book presents the latest developments on video analytics for business intelligence applications. It provides both academic and commercial practitioners an understanding of the state-of-the-art and a resource for potential applications and successful practice.
The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physics-based vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action, activity and tracking; 3D; and 9 poster sessions.
Urban Transport XX contains the proceedings of the 20th International Conference on Urban Transport and the Environment.Topics covered include: Environmental impact; Transport strategies; Public transport systems; Urban transport simulation; Transport safety and security; Experiences from emerging countries; Intelligent transport systems.
Information on integrating soft computing techniques into video surveillance is widely scattered among conference papers, journal articles, and books. Bringing this research together in one source, Handbook on Soft Computing for Video Surveillance illustrates the application of soft computing techniques to different tasks in video surveillance. Worldwide experts in the field present novel solutions to video surveillance problems and discuss future trends. After an introduction to video surveillance systems and soft computing tools, the book gives examples of neural network-based approaches for solving video surveillance tasks and describes summarization techniques for content identification. Covering a broad spectrum of video surveillance topics, the remaining chapters explain how soft computing techniques are used to detect moving objects, track objects, and classify and recognize target objects. The book also explores advanced surveillance systems under development. Incorporating both existing and new ideas, this handbook unifies the basic concepts, theories, algorithms, and applications of soft computing. It demonstrates why and how soft computing methodologies can be used in various video surveillance problems.
Human action analyses and recognition are challenging problems due to large variations in human motion and appearance, camera viewpoint and environment settings. The field of action and activity representation and recognition is relatively old, yet not well-understood by the students and research community. Some important but common motion recognition problems are even now unsolved properly by the computer vision community. However, in the last decade, a number of good approaches are proposed and evaluated subsequently by many researchers. Among those methods, some methods get significant attention from many researchers in the computer vision field due to their better robustness and performance. This book will cover gap of information and materials on comprehensive outlook – through various strategies from the scratch to the state-of-the-art on computer vision regarding action recognition approaches. This book will target the students and researchers who have knowledge on image processing at a basic level and would like to explore more on this area and do research. The step by step methodologies will encourage one to move forward for a comprehensive knowledge on computer vision for recognizing various human actions.
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
It is with great pleasure that we present the proceedings of the 6th Inter- tional, Symposium on Visual Computing (ISVC 2010), which was held in Las Vegas, Nevada. ISVC provides a common umbrella for the four main areas of visual computing including vision, graphics, visualization, and virtual reality. The goal is to provide a forum for researchers, scientists, engineers, and pr- titioners throughout the world to present their latest research ?ndings, ideas, developments, and applications in the broader area of visual computing. This year, the program consisted of 14 oral sessions, one poster session, 7 special tracks, and 6 keynote presentations. The response to the call for papers was very good; we received over 300 submissions for the main symposium from which we accepted 93 papers for oral presentation and 73 papers for poster p- sentation. Special track papers were solicited separately through the Organizing and Program Committees of each track. A total of 44 papers were accepted for oral presentation and 6 papers for poster presentation in the special tracks.
The two volume set LNCS 5875 and LNCS 5876 constitutes the refereed proceedings of the 5th International Symposium on Visual Computing, ISVC 2009, held in Las Vegas, NV, USA, in November/December 2009. The 97 revised full papers and 63 poster papers presented together with 40 full and 15 poster papers of 7 special tracks were carefully reviewed and selected from more than 320 submissions. The papers are organized in topical sections on computer graphics; visualization; feature extraction and matching; medical imaging; motion; virtual reality; face processing; reconstruction; detection and tracking; applications; and video analysis and event recognition. The 7 additional special tracks address issues such as object recognition; visual computing for robotics; computational bioimaging; 3D mapping, modeling and surface reconstruction; deformable models: theory and applications; visualization enhanced data analysis for health applications; and optimization for vision, graphics and medical imaging: theory and applications.
Video context analysis is an active and vibrant research area, which provides means for extracting, analyzing and understanding behavior of a single target and multiple targets. Over the last few decades, computer vision researchers have been working to improve the accuracy and robustness of algorithms to analyse the context of a video automatically. In general, the research work in this area can be categorized into three major topics: 1) counting number of people in the scene 2) tracking individuals in a crowd and 3) understanding behavior of a single target or multiple targets in the scene. This book focusses on tracking individual targets and detecting abnormal behavior of a crowd in a complex scene. Firstly, this book surveys the state-of-the-art methods for tracking multiple targets in a complex scene and describes the authors' approach for tracking multiple targets. The proposed approach is to formulate the problem of multi-target tracking as an optimization problem of finding dynamic optima (pedestrians) where these optima interact frequently. A novel particle swarm optimization (PSO) algorithm that uses a set of multiple swarms is presented. Through particles and swarms diversification, motion prediction is introduced into the standard PSO, constraining swarm members to the most likely region in the search space. The social interaction among swarm and the output from pedestrians-detector are also incorporated into the velocity-updating equation. This allows the proposed approach to track multiple targets in a crowded scene with severe occlusion and heavy interactions among targets. The second part of this book discusses the problem of detecting and localising abnormal activities in crowded scenes. We present a spatio-temporal Laplacian Eigenmap method for extracting different crowd activities from videos. This method learns the spatial and temporal variations of local motions in an embedded space and employs representatives of different activities to construct the model which characterises the regular behavior of a crowd. This model of regular crowd behavior allows for the detection of abnormal crowd activities both in local and global context and the localization of regions which show abnormal behavior.