Download Free 2003 Formula Sae Chassis Design And Optimisation Book in PDF and EPUB Free Download. You can read online 2003 Formula Sae Chassis Design And Optimisation and write the review.

Designing and constructing a chassis and suspension system for a Formula SAE racecar is a highly complex task involving the interaction of hundreds of parts that all perform an essential function. This thesis examines the critical factors in designing and implementing a Formula SAE chassis from the ground up, with a focus on the performance and optimization of the vehicle as an entire system rather than a collection of individual parts. Analysis includes examining the stiffness, strength, and weight of each part, as well as design verification. The thesis will serve as a summary of the knowledge that I have accumulated over four years of personally designing and overseeing the manufacturing of the MIT Motorsports suspension, provide insight into the design of the MY2009 vehicle, and act as a guide for future chassis designers.
Designing a carbon fiber chassis for the Global Formula Race car has historically proven to be both time intensive and difficult. The goal of this thesis is to improve the design process for testing Global Formula Racing team's composite chassis sandwich panels. Consideration was taken regarding Formula SAE rules, and GFR's current design methods. New software was tested, and new tools were created for designing composite sandwich panels which greatly reduced both the chassis design time and the chassis mass.
Hand-selected by racing engineer legend Carroll Smith, the 28 SAE Technical Papers in this book focus on the chassis and suspension design of pure racing cars, an area that has traditionally been - farmed out - to independent designers or firms since the early 1970s. Smith believed that any discussion of vehicle dynamics must begin with a basic understanding of the pneumatic tire, the focus of the first chapter. The racing tire connects the racing car to the track surface by only the footprints of its four tires. Through the tires, the driver receives most of the sensory information needed to maintain or regain control of the race car at high force levels. The second chapter, focusing on suspension design, is an introduction to this complex and fascinating subject. Topics covered include chassis stiffness and flexibility, suspension tuning on the cornering of a Winston Cup race car, suspension kinematics, and vehicle dynamics of road racing cars. Chapter 3 addresses the design of the racing chassis design and how aerodynamics affect the chassis, and the final chapter on materials brings out the fact that the modern racing car utilizes carbon construction to the maximum extent allowed by regulations. These technical papers, written between 1971 and 2003, offer what Smith believed to be the best and most practical nuggets of racing chassis and suspension design information.