Download Free 1997 Medical Device Register Book in PDF and EPUB Free Download. You can read online 1997 Medical Device Register and write the review.

Contains a list of all manufacturers and other specified processors of medical devices registered with the Food and Drug Administration, and permitted to do business in the U.S., with addresses and telephone numbers. Organized by FDA medical device name, in alphabetical order. Keyword index to FDA established standard names of medical devices.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Medical devices that are deemed to have a moderate risk to patients generally cannot go on the market until they are cleared through the FDA 510(k) process. In recent years, individuals and organizations have expressed concern that the 510(k) process is neither making safe and effective devices available to patients nor promoting innovation in the medical-device industry. Several high-profile mass-media reports and consumer-protection groups have profiled recognized or potential problems with medical devices cleared through the 510(k) clearance process. The medical-device industry and some patients have asserted that the process has become too burdensome and is delaying or stalling the entry of important new medical devices to the market. At the request of the FDA, the Institute of Medicine (IOM) examined the 510(k) process. Medical Devices and the Public's Health examines the current 510(k) clearance process and whether it optimally protects patients and promotes innovation in support of public health. It also identifies legislative, regulatory, or administrative changes that will achieve the goals of the 510(k) clearance process. Medical Devices and the Public's Health recommends that the U.S. Food and Drug Administration gather the information needed to develop a new regulatory framework to replace the 35-year-old 510(k) clearance process for medical devices. According to the report, the FDA's finite resources are best invested in developing an integrated premarket and postmarket regulatory framework.
The term 'medical devices' covers a wide range of equipment essential for patient care at every level of the health service, whether at the bedside, at a health clinic or in a large specialised hospital. Yet many countries lack access to high-quality devices, particularly in developing countries where health technology assessments are rare and there is a lack of regulatory controls to prevent the use of substandard devices. This publication provides a guidance framework for countries wishing to create or modify their own regulatory systems for medical devices, based on best practice experience in other countries. Issues highlighted include: the need for harmonised regulations; and the adoption, where appropriate, of device approvals of advanced regulatory systems to avoid an unnecessary drain on scarce resources. These approaches allow emphasis to be placed on locally-assessed needs, including vendor and device registration, training and surveillance and information exchange systems.
The Food and Drug Administration (FDA) is responsible for assuring that medical devices are safe and effective before they go on the market. As part of its assessment of FDA's premarket clearance process for medical devices, the IOM held a workshop June 14-15 to discuss how to best balance patient safety and technological innovation. This document summarizes the workshop.
As medical devices increase in complexity, concerns about efficacy, safety, quality, and longevity increase in stride. Introduced nearly a decade ago, Reliable Design of Medical Devices illuminated the path to increased reliability in the hands-on design of advanced medical devices. With fully updated coverage in its Second Edition, this practical guide continues to be the benchmark for incorporating reliability engineering as a fundamental design philosophy. The book begins by rigorously defining reliability, differentiating it from quality, and exploring various aspects of failure in detail. It examines domestic and international regulations and standards in similar depth, including updated information on the regulatory and standards organizations as well as a new chapter on quality system regulation. The author builds on this background to explain product specification, liability and intellectual property, safety and risk management, design, testing, human factors, and manufacturing. New topics include design of experiments, CAD/CAM, industrial design, material selection and biocompatibility, system engineering, rapid prototyping, quick-response manufacturing, and maintainability as well as a new chapter on Six Sigma for design. Supplying valuable insight based on years of successful experience, Reliable Design of Medical Devices, Second Edition leads the way to implementing an effective reliability assurance program and navigating the regulatory minefield with confidence.
Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.
Background papers 1 to 9 published as technical documents. Available in separate records from WHO/HSS/EHT/DIM/10.1 to WHO/HSS/EHT/DIM/10.9