Download Free 10th International Symposium On High Temperature Metallurgical Processing Book in PDF and EPUB Free Download. You can read online 10th International Symposium On High Temperature Metallurgical Processing and write the review.

In recent years, global metallurgical industries have experienced fast and prosperous growth. High-temperature metallurgical technology is the backbone to support the technical, environmental, and economical needs for this growth. This collection features contributions covering the advancements and developments of new high-temperature metallurgical technologies and their applications to the areas of processing of minerals; extraction of metals; preparation of refractory and ceramic materials; sintering and synthesis of fine particles; treatment and recycling of slag and wastes; and saving of energy and protection of environment. The volume will have a broad impact on the academics and professionals serving the metallurgical industries around the world.
This collection includes the analysis, development, and operation of high-temperature processes that involve the extraction and processing of material resources, production, and treatment of metals, alloys, and ceramic materials. Contributions describe innovative methods for achieving property enhancement, impurity segregation and removal, byproduct recovery, waste minimization, energy efficiency, and utilization of complex ores. Also included are various technical, economic, and environmental issues associated with commercial-scale high-temperature processing methods.
In recent years, global metallurgical industries have experienced fast and prosperous growth. High-temperature metallurgical technology is the backbone to support the technical, environmental, and economical needs for this growth. This collection features contributions covering the advancements and developments of new high-temperature metallurgical technologies and their applications to the areas of processing of minerals; extraction of metals; preparation of refractory and ceramic materials; sintering and synthesis of fine particles; treatment and recycling of slag and wastes; and saving of energy and protection of environment. The volume will have a broad impact on the academics and professionals serving the metallurgical industries around the world.
This volume includes contributions on the physical and numerical modeling of materials processing, and covers a range of metals and minerals. Authors present models and results related to the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
This collection features contributions covering the advances and developments of new high-temperature metallurgical technologies and their applications to the areas of: processing of minerals; extraction of metals; preparation of metallic, refractory, and ceramic materials; treatment and recycling of slag and wastes; conservation of energy; and environmental protection. The volume will have a broad impact on the academics and professionals serving the metallurgical industries around the world by providing them with comprehensive coverage of a wide variety of topics.
​This book describes the available technologies that can be employed to reduce energy consumption and greenhouse emissions in the steel- and ironmaking industries. Ironmaking and steelmaking are some of the largest emitters of carbon dioxide (over 2Gt per year) and have some of the highest energy demand (25 EJ per year) among all industries; to help mitigate this problem, the book examines how changes can be made in energy efficiency, including energy consumption optimization, online monitoring, and energy audits. Due to negligible regulations and unparalleled growth in these industries during the past 15-20 years, knowledge of best practices and innovative technologies for greenhouse gas remediation is paramount, and something this book addresses. Presents the most recent technological solutions in productivity analyses and dangerous emissions control and reduction in steelmaking plants; Examines the energy saving and emissions abatement efficiency for potential solutions to emission control and reduction in steelmaking plants; Discusses the application of the results of research conducted over the last ten years at universities, research centers, and industrial institutions.
In recent years, global metallurgical industries have experienced fast and prosperous growth. High-temperature metallurgical technology is the backbone to support the technical, environmental, and economical needs for this growth. This collection features contributions covering the advancements and developments of new high-temperature metallurgical technologies and their applications to the areas of processing of minerals; extraction of metals; preparation of refractory and ceramic materials; sintering and synthesis of fine particles; treatment and recycling of slag and wastes; and saving of energy and protection of environment. The volume will have a broad impact on the academics and professionals serving the metallurgical industries around the world.
This collection emphasizes the advances of powder and ceramic/glass materials in the fundamental research, technology development, and industrial applications. Ceramic materials science covers the science and technology of creating objects from inorganic, non-metallic materials, and includes design, synthesis, and fabrication of ceramics, glasses, advanced concretes, and ceramic-metal composites. In recent years, the hybrids of ceramic and metallic materials have received plenty of interdisciplinary inspirations and achievements in material processes and functional applications including ionic conductors, catalysis, energy conversion and storage, superconductors, semiconductor, filtrations, etc. Topics cover, but are not limited to:· Silicates, oxides, and non-oxide ceramics and glasses · Synthesis, characterization, modeling, and simulation of ceramic materials · Design and control of ceramic microstructure and properties · Ceramic powders and processing · Catalyst and catalyst support materials · Fundamental understanding of ceramic materials and processes · Novel methods, techniques, and instruments used to characterize ceramics and glasses · High entropy ceramics (and/or entropy stabilized, complex-concentrated, compositionally-complex, multi-principal cation ceramics) · Bioceramics, electronic, magnetic ceramics, and applications · Surface treatment and ceramic thin films, membranes, and coatings · Porous ceramic materials · Hybrid systems of ceramic, metal, and/or polymer composites · Ceramics used for extreme environments · Metallurgical byproducts for ceramic manufacturing
The analysis, development, and/or operation of high temperature processes that involve the production of ferrous and nonferrous metals, alloys, and refractory and ceramic materials are covered in the book. The innovative methods for achieving impurity segregation and removal, by-product recovery, waste minimization, and/or energy efficiency are also involved. Eight themes are presented in the book: 1: High Efficiency New Metallurgical Technology 2: Fundamental Research of Metallurgical Process 3: Alloy and Materials Preparation 4: Roasting, Reduction, and Smelting 5: Sintering of Ores and Powder 6: Simulation and Modeling 7: Treatment of Solid Slag/Wastes and Complex Ores 8: Microwave Heating, Energy, and Environment