Download Free 100 Years Of Prandtls Wedge Book in PDF and EPUB Free Download. You can read online 100 Years Of Prandtls Wedge and write the review.

The biggest problem for a shallow foundation, just as for any other type of foundation, is a failure due to an overestimation of the bearing capacity. This means that the correct prediction of the bearing capacity of the foundation is often the most important part of the design of a civil structure. That is why the publication by Prandtl in 1920 about the hardness of a plastic body, was a major step in solving the bearing capacity of shallow foundations, although it is well possible that he never realised this, because his solution was not made for civil engineering purposes, but for mechanical purposes. Over the last 100 years, a lot of extensions have been made, for example with inclination factors and shape factors. Also many laboratory experiments have been done and numerical calculations have been made. Some even try to extrapolate the failure mechanism for shallow foundations to the failure mechanism around the tip of a pile. All this scientific work leads back to the first publication by Ludwig Prandtl in 1920. This book, “100 Years of Prandtl’s Wedge”, is intended for all those who are interested in these fundamentals of foundation engineering and their history. The Appendices include a copy of Prandtl’s Über die Härte plastischer Körper and of Reissner’s publication of 1924, Zum Erddruckproblem.
Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.
Numerical Methods and Implementation in Geotechnical Engineering explains several numerical methods that are used in geotechnical engineering. The first part of this reference set includes methods such as the finite element method, distinct element method, discontinuous deformation analysis, numerical manifold method, smoothed particle hydrodynamics method, material point method, plasticity method, limit equilibrium and limit analysis, plasticity, slope stability and foundation engineering, optimization analysis and reliability analysis. The authors have also presented different computer programs associated with the materials in this book which will be useful to students learning how to apply the models explained in the text into practical situations when designing structures in locations with specific soil and rock settings. This reference book set is a suitable textbook primer for civil engineering students as it provides a basic introduction to different numerical methods (classical and modern) in comprehensive readable volumes.
Numerical Methods and Implementation in Geotechnical Engineering explains several numerical methods that are used in geotechnical engineering. The second part of this reference set includes more information on the distinct element method, geotechnical optimization analysis and reliability analysis. Information about relevant additional numerical methods is also provided in each chapter with problems where applicable. The authors have also presented different computer programs associated with the materials in this book set which will be useful to students learning how to apply the models explained in the text into practical situations when designing structures in locations with specific soil and rock settings. This reference book set is a suitable textbook primer for civil engineering students as it provides a basic introduction to different numerical methods (classical and modern) in comprehensive readable volumes.
This volume deals with numerical simulation of coupled problems in soil mechanics and foundations. It contains analysis of both shallow and deep foundations. Several nonlinear problems are considered including, soil plasticity, cracking, reaching the soil bearing capacity, creep, etc. Dynamic analysis together with stability analysis are also included. Several numerical models of dams are considered together with coupled problems in soil mechanics and foundations. It gives wide range of modelling soil in different parts of the world. This volume is part of the proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2017.
Designed for advanced undergraduate and graduate courses in modern boundary-layer theory, this frequently cited work offers a self-contained treatment of theories for treating laminar and turbulent boundary layers of reacting gas mixtures. 1962 edition.
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the “4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems,” which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysics, and from nonlinear analysis to the history of chaos theory. The corresponding proceedings collected in this volume address a broad spectrum of contemporary topics, including but not limited to networks, circuits, systems, biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, management complexity and global systems.
This book is an update and extension of the classic textbook by Ludwig Prandtl, Essentials of Fluid Mechanics. It is based on the 10th German edition with additional material included. Chapters on wing aerodynamics, heat transfer, and layered flows have been revised and extended, and there are new chapters on fluid mechanical instabilities and biomedical fluid mechanics. References to the literature have been kept to a minimum, and the extensive historical citations may be found by referring to previous editions. This book is aimed at science and engineering students who wish to attain an overview of the various branches of fluid mechanics. It will also be useful as a reference for researchers working in the field of fluid mechanics.
Developments in Geotechnical Engineering, Volume 7: Limit Analysis and Soil Plasticity covers the theory and applications of limit analysis as applied to soil mechanics. Organized into 12 chapters, the book presents an introduction to the modern development of theory of soil plasticity and includes rock-like material. The first four chapters of the book describe the technique of limit analysis, beginning with the historical review of the subject and the assumptions on which it is based, and then covering various aspects of available techniques of limit analysis. The subsequent chapters deal with the applications of limit analysis to what may be termed "classical soil mechanics problems that include bearing capacity of footings, lateral earth pressure problems, and stability of slopes. In many cases, comparisons of limit analysis solution and conventional limit equilibrium and slip-like solutions are also presented. Other chapters deal with the advances in bearing-capacity problem of concrete blocks or rock and present theoretical and experimental results of various concrete bearing problems. The concluding chapter examines elastic-plastic soil and elastic-plastic-fracture models for concrete materials. This book is an ideal resource text to geotechnical engineers and soil mechanics researchers.
This book is a collection of peer-reviewed best selected research papers presented at 22nd International Conference on Computational Mechanics and Modern Applied Software Systems (CMMASS 2021), held at the Alushta Health and Educational Center, The Republic of Crimea, during 4–13 September 2021. The proceedings is dedicated to solving the real-world problems of applied mechanics using smart computational technology. Physical and mathematical models, numerical methods, computational algorithms and software complexes are discussed, which allow to carry out high-precision mathematical modelling in fluid, gas and plasma mechanics, in general mechanics, deformable solid mechanics, in strength, destruction and safety of structures, etc. Smart technologies and software systems that provide effective solutions to the problems at various multi scale-levels are considered. Special attention is paid to the training of highly qualified specialists for the aviation and space industry.